On the Besicovitch-Stability of some Noisy Subshifts of Finite Type

Léo Gayral 18/03/2021, ALEA Days

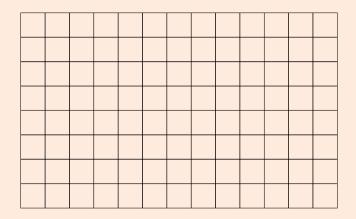
Joint work with Mathieu Sablik IMT, Université Toulouse III Paul Sabatier

Crash Course on Noisy SFTs

Periodic Stability with Bernoulli Noises

Aperiodic Stability of a Robinson Tiling

Crash Course on Noisy SFTs



• Grid \mathbb{Z}^2 .

\times	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	\times
\times	0	0	0	0	0	×	×	0	0	×	0	×
0	×	×	×	0	×	0	×	0	×	0	×	0
\times	0	×	×	×	×	0	0	0	0	0	0	\times
0	0	×	×	×	×	0	×	0	0	×	0	\times
\times	×	×	0	×	0	0	×	×	0	0	0	\times
0	×	0	×	0	×	×	×	×	×	0	×	0

• Grid \mathbb{Z}^2 .

• Alphabet
$$\mathcal{A} = \{\circ, \times\}$$
.

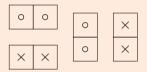
\times	0	×	0	×	0	×	0	×	0	×	0	×
\times	0	×	0	×	0	×	0	×	0	×	0	\times
\times	0	×	0	×	0	×	0	×	0	×	0	\times
0	×	0	×	0	×	0	×	0	×	0	×	0
\times	0	×	0	×	0	×	0	×	0	×	0	\times
\times	0	×	0	×	0	×	0	×	0	×	0	\times
\times	0	×	0	×	0	×	0	×	0	×	0	\times
0	×	0	×	0	×	0	×	0	×	0	×	0

- Grid \mathbb{Z}^2 .
- Alphabet $\mathcal{A} = \{\circ, \times\}.$
- Forbidden patterns \mathcal{F} :

×	×
---	---

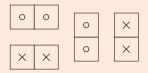
\times	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0
\times	0	×	0	\times	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0
\times	0	×	0	×	0	×	0	×	0	×	0	\times
0	×	0	×	0	×	0	×	0	×	0	×	0
\times	0	×	0	×	0	×	0	×	0	×	0	\times
0	×	0	×	0	×	0	×	0	×	0	×	0

- Grid \mathbb{Z}^2 .
- Alphabet $\mathcal{A} = \{\circ, \times\}.$
- Forbidden patterns \mathcal{F} :



\times	0	×	0	\times	0	\times	0	\times	0	\times	0	\times
0	×	0	×	0	×	0	\times	0	×	0	×	0
\times	0	×	0	×	0	×	0	×	0	×	0	\times
0	×	0	×	0	×	0	×	0	×	0	×	0
\times	0	×	0	×	0	×	0	×	0	×	0	\times
0	×	0	×	0	×	0	×	0	×	0	×	0
\times	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0

- Grid \mathbb{Z}^2 .
- Alphabet $\mathcal{A} = \{\circ, \times\}.$
- Forbidden patterns \mathcal{F} :



The SFT is the space $\Omega_{\mathcal{F}} \subset \mathcal{A}^{\mathbb{Z}^d}$ of such configurations.

Denote $\mathcal{M}_{\mathcal{F}}$ the σ -invariant measures on $\Omega_{\mathcal{F}}$.

• Inject
$$\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$$

×	0	×	0	×	0	×	0	×	0	×	0	\times
0	0	×	0	0	×	\times	0	×	0	×	0	\times
×	0	0	0	0	0	\times	×	0	0	×	0	\times
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	\times
0	0	×	×	×	×	0	×	0	0	×	0	\times
×	×	×	0	×	0	0	×	×	0	0	0	\times
0	×	0	×	0	×	×	×	×	×	0	×	0

- Inject $\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$
- Identify $\mathcal{F} \cong \widetilde{\mathcal{F}} = \mathcal{F} \times \{0\}.$

×	0	×	0	×	0	×	0	×	0	×	0	\times
0	0	×	0	0	×	×	0	×	0	×	0	×
×	0	0	0	0	0	×	×	0	0	×	0	\times
0	×	×	×	0	\times	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	\times
0	0	×	×	×	×	0	×	0	0	×	0	\times
×	×	×	0	×	0	0	×	×	0	0	0	\times
0	×	0	×	0	\times	×	×	×	×	0	\times	0

- Inject $\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$
- Identify $\mathcal{F} \cong \widetilde{\mathcal{F}} = \mathcal{F} \times \{0\}.$
- Denote $\widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon) \subset \mathcal{M}_{\widetilde{\mathcal{F}}}$ the measures with $\mathcal{B}(\varepsilon)^{\otimes \mathbb{Z}^d}$ Bernoulli noise.

\times	0	×	0	×	0	×	0	×	0	×	0	\times
0	0	×	0	0	×	×	0	×	0	×	0	×
\times	0	0	0	0	0	×	×	0	0	×	0	\times
0	×	×	×	0	\times	0	×	0	×	0	\times	0
\times	0	×	×	×	×	0	0	0	0	0	0	\times
0	0	×	×	×	×	0	×	0	0	×	0	×
\times	×	×	0	×	0	0	×	×	0	0	0	\times
0	×	0	×	0	\times	×	×	×	×	0	\times	0

- Inject $\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$
- Identify $\mathcal{F} \cong \widetilde{\mathcal{F}} = \mathcal{F} \times \{0\}.$
- Denote $\mathcal{M}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon) \subset \mathcal{M}_{\widetilde{\mathcal{F}}}$ the measures with $\mathcal{B}(\varepsilon)^{\otimes \mathbb{Z}^d}$ Bernoulli noise.
- The set $\widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)$ is weak-* closed, and $\bigcap_{\varepsilon>0} \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon) = \mathcal{M}_{\mathcal{F}}.$

×	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	\times	0	×	0	×
×	0	0	0	0	0	\times	×	0	0	×	0	\times
0	×	×	×	0	\times	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	\times
0	0	×	×	×	×	0	×	0	0	×	0	\times
×	×	×	0	×	0	0	×	×	0	0	0	\times
0	×	0	×	0	\times	×	×	\times	×	0	×	0

Reminder (Weak-* Convergence)

We say that $\mu_n \xrightarrow{*} \mu$ when $\mu_n([w]) \rightarrow \mu([w])$ for any finite pattern w.

Χ

×	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	×
×	0	0	0	0	0	×	×	0	0	×	0	×
0	\times	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	×
0	0	×	×	×	×	0	×	0	0	×	0	×
×	×	×	0	×	0	0	×	×	0	0	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

Finite Hamming distance:

$$d_{13\times 8}(x,) = \frac{1}{13\times 8}$$

												,
×	0	\times	0	×	0	×	0	×	0	×	0	\times
0	×	0	×	0	×	0	×	0	×	0	×	0
×	0	\times	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	\times	0	\times	0	\times	0	×	0
×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	\times	0	×	0
×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0

у

Finite Hamming distance:

$$d_{13\times 8}(x,y) = \frac{1}{13\times 8}$$

						x y						
×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	×	×	0	×	×	×	×	×	×	×	×
×	0	X	0	X	0	×	Ø	Ø	0	×	0	×
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	×	0	×	0	×	0	×
0	×	×	×	×	×	0	×	0	×	×	×	×
×	×	×	0	×	0	×	×	×	0	×	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

Finite Hamming distance:

$$d_{13\times 8}(x,y) = \frac{33}{13\times 8} \approx 0.3$$

x y												
×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	×	×	0	×	×	×	×	×	×	×	×
×	0	×	0	X	0	×	Ø	Ø	0	×	0	×
0	×	×	×	0	×	0	×	0	\times	0	×	0
×	0	×	Ø	×	×	×	0	×	0	×	0	×
0	×	×	×	X	×	0	×	0	×	X	X	×
×	×	×	0	×	0	×	×	×	0	×	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

Finite Hamming distance:

$$d_{13\times 8}(x,y) = \frac{33}{13\times 8} \approx 0.3$$

Hamming-Besicovitch pseudo-distance:

$$d_H = \limsup_{n \to \infty} d_{n \times n}$$

x y												
×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	×	×	0	×	×	×	×	×	×	×	×
×	0	×	0	X	0	×	Ø	Ø	0	×	0	×
0	×	×	×	0	×	0	×	0	\times	0	×	0
×	0	×	Ø	×	×	×	0	×	0	×	0	×
0	×	×	×	X	×	0	×	0	×	X	X	×
×	×	×	0	×	0	×	×	×	0	×	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

Finite Hamming distance:

$$d_{13\times 8}(x,y) = \frac{33}{13\times 8} \approx 0.3$$

Hamming-Besicovitch pseudo-distance:

$$d_H = \limsup_{n \to \infty} d_{n \times n}$$

Besicovitch distance on σ -invariant measures:

$$d_B(\mu, \nu) = \inf_{\lambda \text{ a coupling}} \int d_H(x, y) \mathrm{d}\lambda(x, y)$$

The SFT $\Omega_{\mathcal{F}}$ is *f*-stable for d_B on Bernoulli noises if:

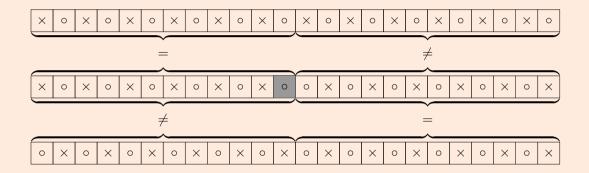
$$\forall \varepsilon > 0, \sup_{\lambda \in \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)} d_{\mathcal{B}}(\pi_{1}^{*}(\lambda), \mathcal{M}_{\mathcal{F}}) \leq f(\varepsilon).$$

The SFT Ω_F is *f*-stable for d_B on Bernoulli noises if:

$$\forall \varepsilon > 0, \sup_{\lambda \in \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)} d_{\mathcal{B}}(\pi_{1}^{*}(\lambda), \mathcal{M}_{\mathcal{F}}) \leq f(\varepsilon).$$

What kind of (in)stability results can we expect from typical SFTs ?

Periodic Stability with Bernoulli Noises



A SFT $\Omega_{\mathcal{F}}$ is (strongly) periodic if there exists an integer N such that any configuration is invariant for any translation in $(N\mathbb{Z})^d$.

Theorem

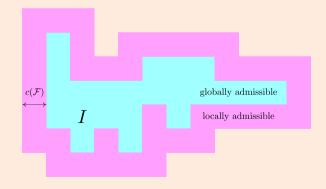
Consider $\Omega_{\mathcal{F}}$ a 2D+ periodic SFT.

Then $\Omega_{\mathcal{F}}$ is f-stable on Bernoulli noises, with linear speed $f(\varepsilon) = 2C_{c(\mathcal{F})}^{d}\varepsilon$.

Lemma

Consider a 2D+ periodic SFT $\Omega_{\mathcal{F}}$.

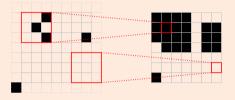
There exists $c(\mathcal{F}) \geq \lfloor \frac{N}{2} \rfloor$ such that, for any connected cell window $I \subset \mathbb{Z}^d$, if $w \in \mathcal{A}^{I+B_c}$ is locally admissible, then $w|_I$ is globally admissible.



Thickened Percolation

Consider
$$\varphi_n(b)_x = \max_{\|y-x\|_{\infty} \le n} b_y$$
 for $b \in \{0,1\}^{\mathbb{Z}^d}$.

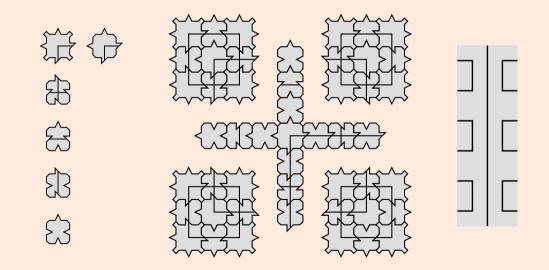
Starting from a site percolation ν , we obtain the *n*-thickened percolation $\varphi_n^*(\nu)$.



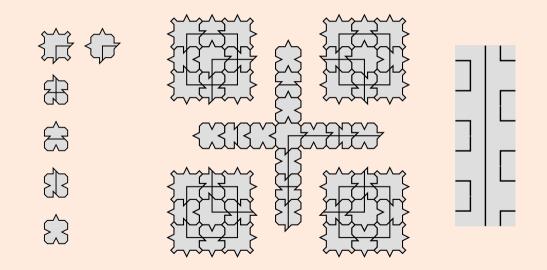
Proposition

Consider $I \subset \mathbb{Z}^d$ the random infinite component of the n-thickened $\mathcal{B}(\varepsilon)^{\otimes \mathbb{Z}^d}$ -percolation. Then $C_n^d = 48(2n+1)^d$ is such that $\mathbb{P}(0 \notin I) \leq C_n^d \times \varepsilon$. Aperiodic Stability of a Robinson Tiling

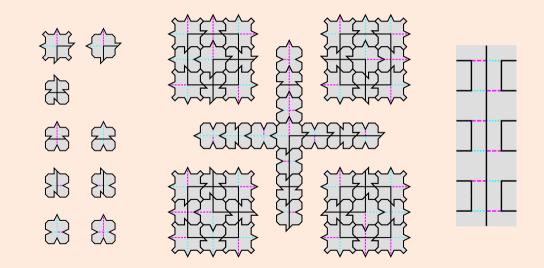
The (Enhanced) Robinson Tiling



The (Enhanced) Robinson Tiling

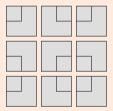


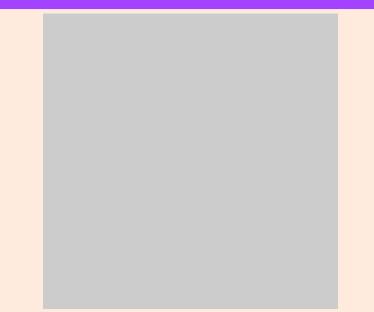
The (Enhanced) Robinson Tiling

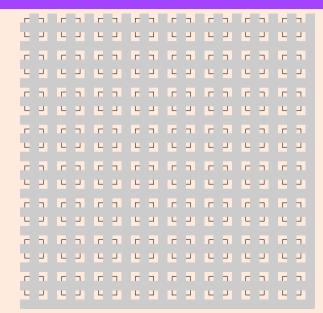


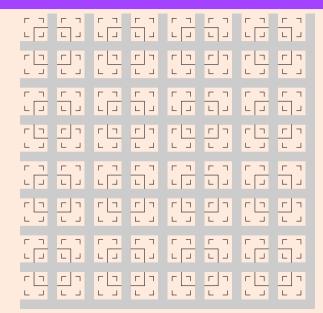
Proposition

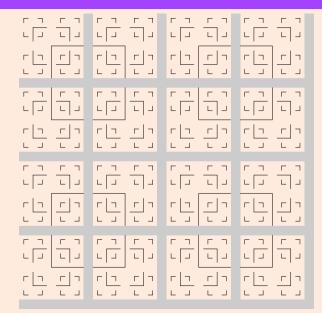
For any scale $N \ge 2$, the constant $C_N = 2^N - 1$ is such that for any integer n and any clear locally admissible pattern w on B_{n+C_N} , $w|_{B_n}$ is almost globally admissible, in the sense that up to a low-density grid, $w|_{B_n}$ is made of well-aligned and well-oriented N-macro-tiles.



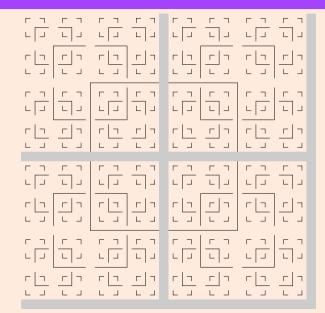


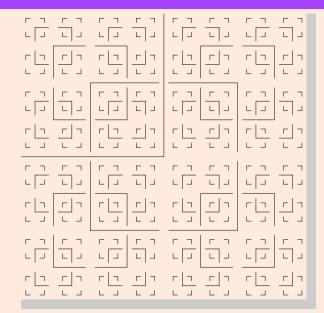






13/15





13/15

Theorem

For any $\varepsilon > 0$, any scale N, and any measure $\mu = \pi_1^*(\lambda)$ with $\lambda \in \mathcal{M}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)$:

$$d_B(\mu, \mathcal{M}_{\mathcal{F}}) \leq 96 \left(2^{N+2}+1\right)^2 \varepsilon + \frac{1}{2^{N-1}}.$$

Hence, the SFT is f-stable with $f(\varepsilon) = 48\sqrt[3]{6\varepsilon}$.

Are there any questions?

 Léo Gayral and Mathieu Sablik.
On the Besicovitch-stability of noisy random tilings. https://arxiv.org/abs/2104.09885, 2021.