An Autumn Stroll Among Random Tilings

At Low Temperatures With Local Rules

Léo Gayral 28/09/2021, Journée ANR DIMERS

IMT, Université Toulouse III Paul Sabatier

Physical Motivation

Random Dimers With Local Rules

- A Random Dimer Model
- Peierls Argument for Random Dimers
- Generalisation of the Result
- Wang Tiles with Bernoulli Noise
 - General Framework
 - Stability of the Periodic Subshifts
 - The Aperiodic Robinson Tiling
- Random Dimers with Holes

Physical Motivation

Quasicrystals

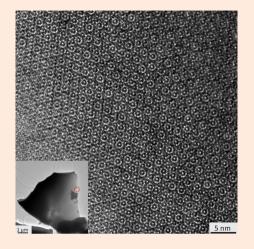


Figure 1: HRTEM image of a natural $Al_{71}Ni_{25}Fe_5$ Decagonite quasicrystal with plane decagonal rotational symmetry [Bindi et al., 2015, Figure 5].

Wang Tiles with Bernoulli Noise

Bibliography

Aperiodic Tilings

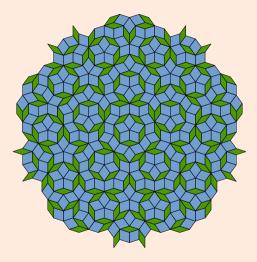


Figure 2: The Penrose tiling has a pentagonal rotational symmetry.

Physical Motivation

Random Dimers With Local Rules

Wang Tiles with Bernoulli Noise

Random Dimers with Holes

Bibliography

Gibbs Measures and Local Rules

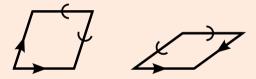


Figure 3: Matching arrows on the edges of the rhombuses forces the Penrose tiling.

Random Dimers With Local Rules

A Random Dimer Model

Dimer Tilings

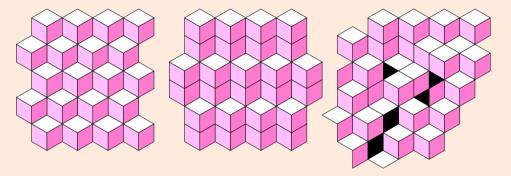


Figure 4: Tiling examples.

Height Function

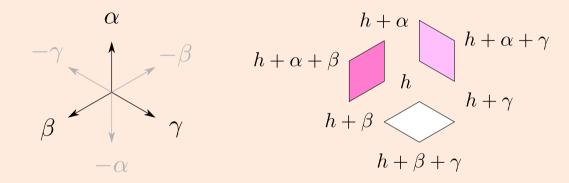


Figure 5: General weighted arrows.

Figure 6: Relative heights of the vertices of a tile.

Wang Tiles with Bernoulli Noise

Height Function

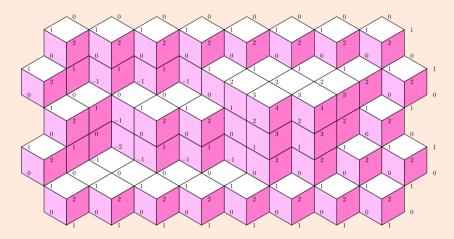


Figure 7: Height function on the vertices with $\alpha = \beta = \gamma = 1$.



Figure 8: Forbidden patterns.

Figure 9: Locally admissible tiling.

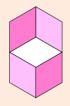


Figure 8: Forbidden patterns.

Figure 9: Locally admissible tiling.

Figure 8: Forbidden patterns.

Figure 9: Locally admissible tiling.

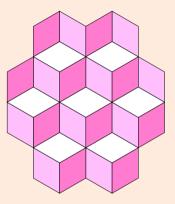


Figure 8: Forbidden patterns.

Figure 9: Locally admissible tiling.

Associated Gibbs Measure

Definition

Consider Λ a tileable, simply connected, compact domain, and $E(\eta)$ the number of forbidden patterns in a tiling η of Λ .

We define $\mu_{\Lambda,\beta}(\eta) := \frac{1}{Z_{\Lambda,\beta}} \exp(-\beta \times E(\eta))$ the Gibbs measure at inverse temperature β .

Associated Gibbs Measure

Definition

Consider Λ a tileable, simply connected, compact domain, and $E(\eta)$ the number of forbidden patterns in a tiling η of Λ .

We define $\mu_{\Lambda,\beta}(\eta) := \frac{1}{Z_{\Lambda,\beta}} \exp(-\beta \times E(\eta))$ the Gibbs measure at inverse temperature β .

Can we control $\mathbb{E}_{\Lambda,\beta}[|H(x)|]$, with *H* the height of a vertex $x \in \Lambda$?

Random Dimers With Local Rules

Peierls Argument for Random Dimers

Hexagonal Contours Induced by Forbidden Patterns

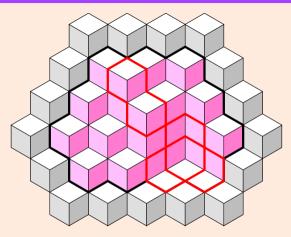


Figure 10: Rule violations can be decomposed into a family of cycles.

Hexagonal Contours Induced by Forbidden Patterns

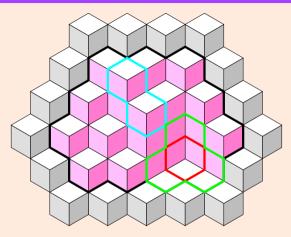


Figure 10: Rule violations can be decomposed into a family of cycles.

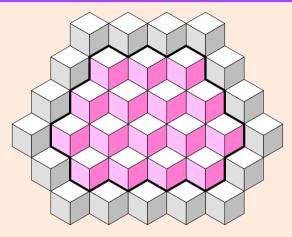


Figure 11: The number of cycles linearly impacts the height difference.

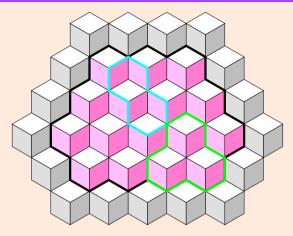


Figure 11: The number of cycles linearly impacts the height difference.

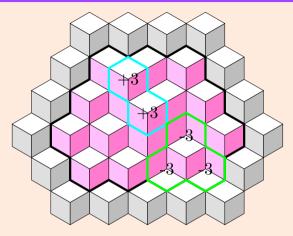


Figure 11: The number of cycles linearly impacts the height difference.

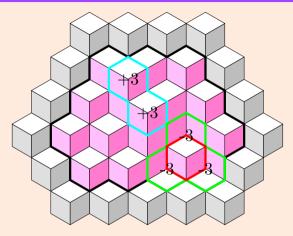


Figure 11: The number of cycles linearly impacts the height difference.

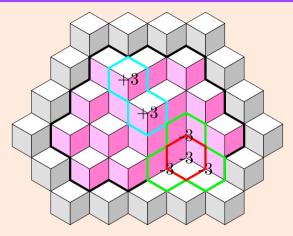


Figure 11: The number of cycles linearly impacts the height difference.

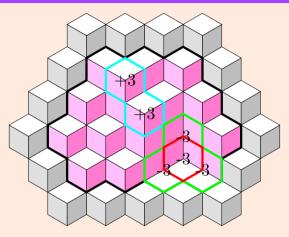


Figure 11: The number of cycles linearly impacts the height difference.

We have $|H - H_0| \le 3T$, with H_0 the height without forbidden patterns, and T the number of cycles around a vertex.

Wang Tiles with Bernoulli Noise

Cycle Correction Decreases Energy

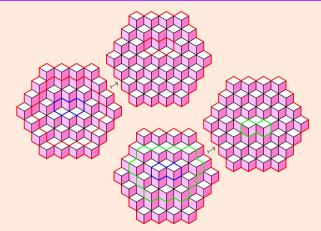


Figure 12: In both examples we correct the cycle *around* the small blue one.

If we obtain η' by correcting the cycle γ from η , then $E(\eta) = E(\eta') + |\gamma|$.

Peierls Argument

Theorem

We have
$$\mathbb{E}_{\beta}[T] \leq \exp\left(\frac{9e^{2\beta}}{2(e^{\beta}+2)^2} \times \frac{1}{(e^{\beta}-2)^2}\right) - 1 < \infty$$
 when $\beta > \ln(2)$.

Proof.

See Appendix 1.

It follows that $|H - H_0|$ stays bounded on average on a given vertex.

However, it is expected that $|H - H_0|$ isn't bounded and takes arbitrarily high values.

Peierls Argument

Theorem

We have
$$\mathbb{E}_{\beta}[T] \leq \exp\left(\frac{9e^{2\beta}}{2(e^{\beta}+2)^2} \times \frac{1}{(e^{\beta}-2)^2}\right) - 1 < \infty$$
 when $\beta > \ln(2)$.

Proof.

See Appendix 1.

It follows that $|H - H_0|$ stays bounded on average on a given vertex.

However, it is expected that $|H - H_0|$ isn't bounded and takes arbitrarily high values.

Could we prove that $H \notin L^1$ when β is small-enough?

Random Dimers With Local Rules

Generalisation of the Result

Key Ingredients for the Peierls Argument

We need a good notion of contours, such that:

- We have a relation between contours and the height, e.g. H = O(T),
- $\cdot\,$ We can injectively erase a contour while decreasing the energy,

e.g. $E(\eta) \geq E(\eta') + O(|\gamma|).$

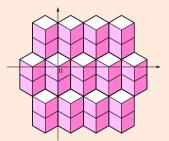
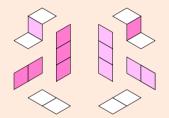
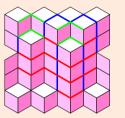


Figure 13: Periodic discrete surface corresponding to the plane $(2, 2, 1)^{\perp}$.

Forbidden Patterns Won't Define Cycles...





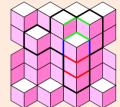


Figure 14: Forbidden patterns.

Figure 15: Empirical choice of contours.

Amidst a worldwide plague, my internship ended on this roadblock.

Physical Motivation

Random Dimers With Local Rules

Wang Tiles with Bernoulli Nois

Random Dimers with Holes

Bibliography

...But What If Contours Were Thick?

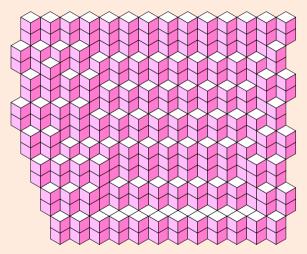


Figure 16: Here, instead of cycles made of edges,

Wang Tiles with Bernoulli Noise

Bibliography

...But What If Contours Were Thick?

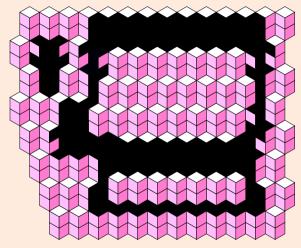


Figure 16: Here, instead of cycles made of edges, we define thick contours made of tiles.

Wang Tiles with Bernoulli Noise

General Framework

Subshifts of Finite Type

×	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	×
×	0	0	0	0	0	\times	×	0	0	×	0	×
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	Х
0	0	×	×	×	×	0	×	0	0	×	0	Х
×	×	×	0	×	0	0	×	×	0	0	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

- Grid \mathbb{Z}^2 .
- Alphabet $\mathcal{A} = \{\circ, \times\}.$

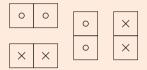
Figure 17: Example of configuration,

Subshifts of Finite Type

×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0
×	0	×	0	×	0	×	0	×	0	×	0	×
0	\times	0	\times	0	×	0	×	0	×	0	×	0
×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0
×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0

Figure 17: Example of configuration, without forbidden patterns.

- Grid \mathbb{Z}^2 .
- Alphabet $\mathcal{A} = \{\circ, \times\}.$
- Forbidden patterns \mathcal{F} :



Subshifts of Finite Type

×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0
×	0	×	0	×	0	×	0	×	0	×	0	×
0	\times	0	\times	0	×	0	×	0	×	0	×	0
×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0
×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0

- Grid \mathbb{Z}^2 .
- Alphabet $\mathcal{A} = \{\circ, \times\}.$
- Forbidden patterns \mathcal{F} :

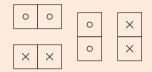


Figure 17: Example of configuration, without forbidden patterns.

The SFT is the space $\Omega_{\mathcal{F}}\subset \mathcal{A}^{\mathbb{Z}^d}$ of such configurations.

Denote $\mathcal{M}_{\mathcal{F}}$ the σ -invariant measures on $\Omega_{\mathcal{F}}$.

• Inject
$$\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$$

\times	0	×	0	×	0	×	0	×	0	×	0	\times
0	0	×	0	0	×	×	0	×	0	×	0	\times
×	0	0	0	0	0	×	×	0	0	×	0	\times
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	\times
0	0	×	×	×	×	0	×	0	0	×	0	\times
×	×	×	0	×	0	0	×	×	0	0	0	\times
0	×	0	×	0	×	×	×	×	×	0	×	0

Figure 18: Configuration,

• Inject
$$\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$$

• Identify
$$\mathcal{F} \cong \widetilde{\mathcal{F}} = \mathcal{F} \times \{0\}.$$

×	0	×	0	×	0	\times	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	\times
×	0	0	0	0	0	×	×	0	0	×	0	\times
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	\times
0	0	×	×	×	×	0	×	0	0	×	0	\times
×	×	×	0	×	0	0	×	×	0	0	0	\times
0	×	0	×	0	×	×	×	×	×	0	×	0

Figure 18: Configuration, now with obscured cells.

- Inject $\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$
- Identify $\mathcal{F} \cong \widetilde{\mathcal{F}} = \mathcal{F} \times \{0\}.$
- Denote $\widetilde{\mathcal{M}}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon) \subset \mathcal{M}_{\widetilde{\mathcal{F}}}$ the measures with $\mathcal{B}(\varepsilon)^{\otimes \mathbb{Z}^d}$ Bernoulli noise.

\times	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	×
\times	0	0	0	0	0	×	×	0	0	×	0	\times
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	\times
0	0	×	×	×	×	0	×	0	0	×	0	\times
×	×	×	0	×	0	0	×	×	0	0	0	\times
0	×	0	×	0	×	×	×	×	×	0	×	0

Figure 18: Configuration, now with obscured cells.

- Inject $\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$
- Identify $\mathcal{F} \cong \widetilde{\mathcal{F}} = \mathcal{F} \times \{0\}.$
- Denote $\mathcal{M}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon) \subset \mathcal{M}_{\widetilde{\mathcal{F}}}$ the measures with $\mathcal{B}(\varepsilon)^{\otimes \mathbb{Z}^d}$ Bernoulli noise.
- The set $\widetilde{\mathcal{M}}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon)$ is weak-* closed, and $\bigcap_{\varepsilon>0} \widetilde{\mathcal{M}}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon) = \mathcal{M}_{\mathcal{F}}.$

×	0	×	0	×	0	×	0	×	0	×	0	\times
0	0	×	0	0	×	×	0	×	0	×	0	×
\times	0	0	0	0	0	×	×	0	0	×	0	\times
0	×	×	×	0	×	0	×	0	×	0	×	0
\times	0	×	×	×	×	0	0	0	0	0	0	\times
0	0	×	×	×	×	0	×	0	0	×	0	\times
\times	×	×	0	×	0	0	×	×	0	0	0	\times
0	×	0	×	0	×	×	×	×	×	0	×	0

Figure 18: Configuration, now with obscured cells.

Reminder (Weak-* Convergence)

We say that $\mu_n \xrightarrow{*} \mu$ when $\mu_n([w]) \rightarrow \mu([w])$ for any finite pattern w.

Besicovitch Distance

Х

×	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	×
×	0	0	0	0	0	×	×	0	0	×	0	\times
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	×
0	0	×	×	×	×	0	×	0	0	×	0	×
\times	×	×	0	×	0	0	×	×	0	0	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

Figure 19: Frequency of differences between *x* and *y*.

Finite Hamming distance:

$$d_{13\times 8}(x,) = \frac{1}{13\times 8}$$

19/32

V

Besicovitch Distance

												y
×	0	\times	0	\times	0	\times	0	\times	0	\times	0	×
0	\times	0	×	0	×	0	×	0	×	0	×	0
×	0	×	0	×	0	×	0	×	0	×	0	×
0	\times	0	×	0	×	0	×	0	×	0	×	0
×	0	\times	0	\times	0	\times	0	\times	0	\times	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0
×	0	\times	0	\times	0	\times	0	\times	0	\times	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0

Figure 19: Frequency of differences between x and y.

Finite Hamming distance: $d_{13 \times 8}(x, y) = \frac{1}{13 \times 8}$

Besicovitch Distance

						x y						
×	0	×	0	×	0	×	0	×	0	×	0	×
0	Ø	X	×	0	×	Ø	Ø	Ø	Ø	X	×	Ø
×	0	Ø	0	Ø	0	×	Ø	Ø	0	×	0	Х
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	×	0	Ø	0	×	0	×
0	Ø	Ø	×	Ø	×	0	×	0	Ø	Ø	Ø	Ø
×	×	×	0	×	0	×	×	×	0	×	0	×
0	×	0	×	0	×	×	×	Ø	×	0	×	0

Figure 19: Frequency of differences between x and y.

Finite Hamming distance: $d_{13\times 8}(x,y) = \frac{33}{13\times 8} \approx 0.3$

Besicovitch Distance

						x y						
×	0	×	0	×	0	×	0	×	0	×	0	×
0	Ø	X	Ø	0	×	Ø	Ø	Ø	Ø	X	×	Ø
×	0	Ø	0	Ø	0	×	Ø	Ø	0	×	0	×
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	Ø	×	Ø	×	0	Ø	0	×	0	×
0	Ø	Ø	×	Ø	×	0	×	0	Ø	Ø	Ø	Ø
×	×	×	0	×	0	×	×	×	0	×	0	×
0	×	0	×	0	×	×	×	Ø	×	0	×	0

Figure 19: Frequency of differences between x and y.

Finite Hamming distance: $d_{13\times8}(x,y) = \frac{33}{13\times8} \approx 0.3$

Hamming-Besicovitch pseudo-distance: $d_{H} = \limsup_{n \to \infty} d_{n \times n}$

19/32

19/32

Besicovitch Distance

			-		-	xyy		-			-	
×	0	×	0	×	0	×	0	×	0	×	0	×
0	Ø	X	×	0	×	×	Ø	×	Ø	X	×	Ø
×	0	Ø	0	Ø	0	×	Ø	×	0	×	0	×
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	×	0	×	0	×	0	×
0	×	×	×	×	×	0	×	0	×	×	×	×
×	×	×	0	×	0	×	×	×	0	×	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

x|y

Finite Hamming distance: $d_{13\times8}(x,y) = \frac{33}{13\times8} \approx 0.3$

Hamming-Besicovitch pseudo-distance: $d_{H} = \limsup_{n \to \infty} d_{n \times n}$

Figure 19: Frequency of differences between x and y.

Besicovitch distance on σ -invariant measures:

$$d_{B}(\mu,\nu) = \inf_{\lambda \text{ a coupling}} \int d_{H}(x,y) d\lambda(x,y)$$

Random Dimers With Local Rules

Wang Tiles with Bernoulli Nois

Stability

The SFT $\Omega_{\mathcal{F}}$ is *f*-stable for d_B on Bernoulli noises if:

$$\forall \varepsilon > 0, \sup_{\lambda \in \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)} d_{\mathcal{B}}(\pi_{1}^{*}(\lambda), \mathcal{M}_{\mathcal{F}}) \leq f(\varepsilon).$$

Random Dimers With Local Rules

Wang Tiles with Bernoulli Noise

Bibliography

Stability

The SFT $\Omega_{\mathcal{F}}$ is *f*-stable for d_B on Bernoulli noises if:

$$\forall \varepsilon > 0, \sup_{\lambda \in \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)} d_{\mathcal{B}}(\pi_{1}^{*}(\lambda), \mathcal{M}_{\mathcal{F}}) \leq f(\varepsilon).$$

Theorem [Gayral and Sablik, 2021, Corollary 3.15]

Stability is conjugacy-invariant.

Random Dimers With Local Rules

Wang Tiles with Bernoulli Noise

Random Dimers with Holes

Bibliography

The SFT $\Omega_{\mathcal{F}}$ is *f*-stable for d_B on Bernoulli noises if:

$$\forall \varepsilon > 0, \sup_{\lambda \in \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)} d_{\mathcal{B}}\left(\pi_{1}^{*}(\lambda), \mathcal{M}_{\mathcal{F}}\right) \leq f(\varepsilon).$$

Theorem [Gayral and Sablik, 2021, Corollary 3.15]

Stability is conjugacy-invariant.

What kind of (in)stability results can we expect from typical SFTs?

Stability of the Periodic Subshifts

1D Classification of the Stability

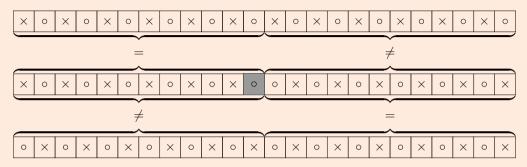


Figure 20: The noisy configuration is at Hamming distance $\frac{1}{2}$ of the clear ones.

1D Classification of the Stability

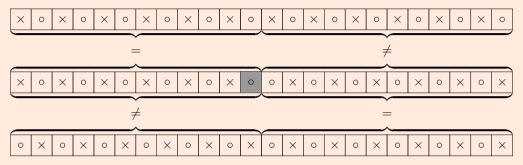


Figure 20: The noisy configuration is at Hamming distance $\frac{1}{2}$ of the clear ones.

Theorem [Gayral and Sablik, 2021, Theorem 4.8 and Theorem 4.9]

Consider $\Omega_{\mathcal{F}}$ a 1D SFT. Then $\Omega_{\mathcal{F}}$ is (linearly) stable on Bernoulli noises iff it is mixing.

Most notably, p-periodic SFTs (with $p \ge 2$) are unstable.

Periodic Tilings in Higher Dimensions

A SFT $\Omega_{\mathcal{F}}$ is (strongly) periodic if there exists an integer N such that any configuration is invariant for any translation in $(N\mathbb{Z})^d$.

Theorem [Gayral and Sablik, 2021, Theorem 5.7]

Consider $\Omega_{\mathcal{F}}$ a 2D+ periodic SFT.

Then $\Omega_{\mathcal{F}}$ is f-stable on Bernoulli noises, with linear speed $f(\varepsilon) = 2C_{c(\mathcal{F})}^{d}\varepsilon$.

Reconstruction Function

Lemma [Gayral and Sablik, 2021, Lemma 5.3]

Consider a 2D+ periodic SFT $\Omega_{\mathcal{F}}$.

There exists $c(\mathcal{F}) \geq \lceil \frac{N}{2} \rceil$ such that, for any connected cell window $I \subset \mathbb{Z}^d$, if $w \in \mathcal{A}^{I+B_c}$ is locally admissible, then $w|_I$ is globally admissible.

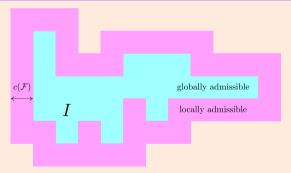


Figure 21: Here, the whole domain contains no forbidden pattern,but only the blue zone is guaranteed to be the restriction of an actual configuration.23/32

Thickened Percolation

Consider
$$\varphi_n(b)_x = \max_{\|y-x\|_{\infty} \leq n} b_y$$
 for $b \in \{0,1\}^{\mathbb{Z}^d}$.

Starting from a site percolation ν , we obtain the *n*-thickened percolation $\varphi_n^*(\nu)$.

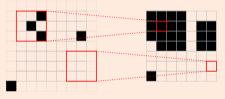


Figure 22: Illustration of the mapping φ_1 .

Proposition [Gayral and Sablik, 2021, Proposition 5.6]

Consider $I \subset \mathbb{Z}^d$ the random infinite component of the n-thickened $\mathcal{B}(\varepsilon)^{\otimes \mathbb{Z}^d}$ -percolation. Then $C_n^d = 48(2n+1)^d$ is such that $\mathbb{P}(0 \notin I) \leq C_n^d \times \varepsilon$.

The Aperiodic Robinson Tiling

The (Enhanced) Robinson Tiling

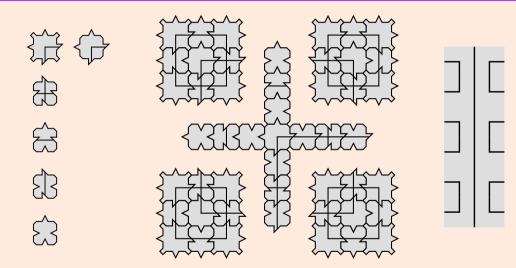


Figure 23: Tileset and hierarchical structure of the Robinson tiling,

The (Enhanced) Robinson Tiling

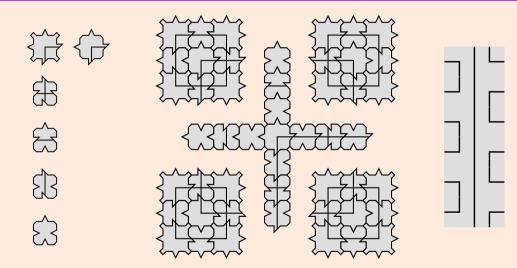


Figure 23: Tileset and hierarchical structure of the Robinson tiling,

Random Dimers with Holes

Bibliography

The (Enhanced) Robinson Tiling

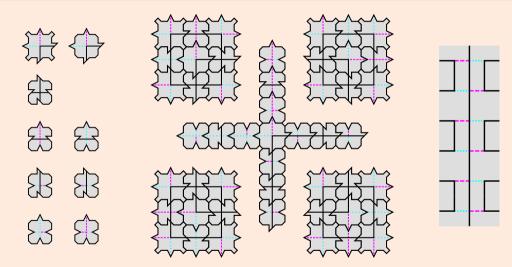


Figure 23: Tileset and hierarchical structure of the Robinson tiling, with strengthened local rules.

Reconstruction Function for the Enhanced Tiling

Proposition [Gayral and Sablik, 2021, Proposition 7.7]

For any scale $N \ge 2$, the constant $C_N = 2^N - 1$ is such that

for any integer n and any clear locally admissible pattern w on B_{n+C_N} ,

 $w|_{B_n}$ is almost globally admissible, in the sense that up to a low-density grid,

 $w|_{B_n}$ is made of well-aligned and well-oriented N-macro-tiles.

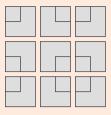


Figure 24: Family of well-aligned and well-oriented tiles.

Density of the Grid

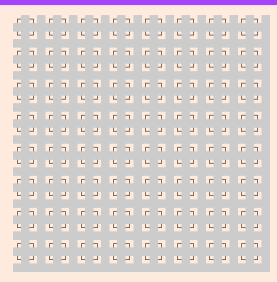


Figure 25: The density of the grid around *N*-macro-tiles goes to 0 as $N \rightarrow \infty$.

Density of the Grid

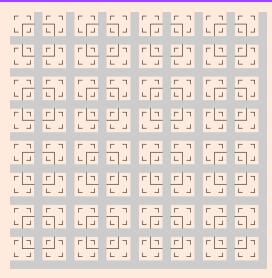


Figure 25: The density of the grid around *N*-macro-tiles goes to 0 as $N \rightarrow \infty$.

Density of the Grid

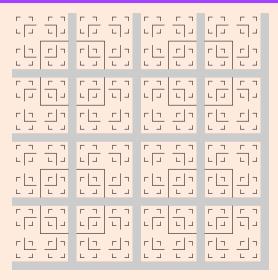


Figure 25: The density of the grid around *N*-macro-tiles goes to 0 as $N \rightarrow \infty$.

Non-linear Polynomial Stability

Theorem [Gayral and Sablik, 2021, Proposition 7.8 and Theorem 7.9]

For any $\varepsilon > 0$, any scale N, and any measure $\mu = \pi_1^*(\lambda)$ with $\lambda \in \mathcal{M}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)$:

$$d_B(\mu, \mathcal{M}_F) \leq 96 \left(2^{N+2}+1\right)^2 \varepsilon + \frac{1}{2^{N-1}}.$$

Hence, the SFT is f-stable with $f(\varepsilon) = 48\sqrt[3]{6\varepsilon}$.

Aperiodic Instability

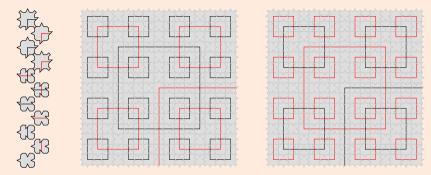


Figure 26: Two-coloured Robinson structure.

Proposition [Gayral, 2021, Proposition 1]

The SFT Ω_{RB} is unstable.

More precisely, for any $\varepsilon > 0$, we have $\mu \in \mathcal{M}_{RB}^{\mathcal{B}}(\varepsilon)$ such that $d_{B}(\mu, \mathcal{M}_{RB}) \geq \frac{1}{8}$.

Undecidability

We can embed Turing machines space-time diagrams into the Robinson structure.

Theorem [Gayral, 2021, Corollary 1]

The problem of deciding whether the SFT $\Omega_{\mathcal{F}}$ is stable or not given the set of forbidden patterns \mathcal{F} is undecidable.

Random Dimers with Holes

What Happens to Dimers With the Besicovitch Distance?

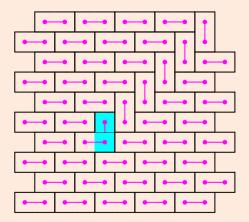


Figure 27: Example of a Domino SFT configuration, with one forbidden pattern highlighted in blue.

Bibliography

📔 Luca Bindi et al.

Natural quasicrystal with decagonal symmetry. *Scientific reports*, 5(1):1–5, 2015.

 Léo Gayral and Mathieu Sablik.
On the Besicovitch-stability of noisy random tilings. arxiv.org/abs/2104.09885v2, 2021.

📄 Léo Gayral.

The Besicovitch-stability of noisy tilings is undecidable. hal.archives-ouvertes.fr/hal-03233596, 2021.

THE END OF PRESENTATION **ONE MORE SLIDE:**

Thank you.

Appendix 1: Computations for the Peierls Argument

Theorem

We have
$$\mathbb{E}_{\beta}[T] \leq \exp\left(\frac{9e^{2\beta}}{2(e^{\beta}+2)^2} \times \frac{1}{(e^{\beta}-2)^2}\right) - 1 < \infty$$
 when $\beta > \ln(2)$.

Proof.

We have:

Appendix 1: Computations for the Peierls Argument

Theorem

We have
$$\mathbb{E}_{\beta}[T] \leq \exp\left(\frac{9e^{2\beta}}{2(e^{\beta}+2)^2} \times \frac{1}{(e^{\beta}-2)^2}\right) - 1 < \infty$$
 when $\beta > \ln(2)$.

Proof.

Thus:

$$\mathbb{E}[T(u)] \leq \exp\left(\sum_{u \triangleleft \gamma} e^{-\beta|\gamma|}\right) - 1.$$

Notice that:

$$\sum_{0 \triangleleft \gamma} e^{-\beta|\gamma|} \leq \sum_{\substack{k \ge 6\\ k \in 2\mathbb{N}}} \frac{3}{8}k \times 3 \times 2^{k-1} \times e^{-\beta k} = \frac{9}{8} \sum_{l \ge 3} l\left(\frac{4}{e^{2\beta}}\right)^l.$$

This series is convergent as soon as $\frac{4}{e^{2\beta}} < 1$, *i.e.* $\beta > \ln(2)$, and the bound follows.