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Subshifts of Finite Type and Forbidden Patterns

Figure 1: Example of configuration,

without occurrences of the forbidden patterns.

• Group G = Z2 with 2 generators.
• Alphabet A = { , }.

• Finite set of forbidden patterns F :

• The SFT is the space ΩF ⊂ AG

of such configurations.
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Example of Tiling

Consider the following Diluted Domino tiling:

Figure 2: This tileset forces no specific behaviour on admissible configurations.
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Space of Measures

DenoteMF the σ-invariant measures on ΩF , such that σ∗
k (µ) = µ for any k.

There are several ways of adding noise to tilings.

• Statistical Physics Viewpoint: Gibbs Measures

• Information Theory Viewpoint: Bernoulli Noise
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Clair-Obscur Framework

• Inject A ↪→ Ã = A× {0, 1}.
• Identify F ∼= F̃ = F × {0}.

• Denote M̃B
F (ε) ⊂ MF̃ the measures

with B(ε)⊗Zd Bernoulli noise.

• The set M̃B
F (ε) is weak-* closed,

and
⋂
ε>0

M̃B
F (ε) ≈ MF .

Figure 3: Chequerboard,

now with obscured cells.

Reminder (Weak-* Convergence)

We say that µn
∗→ µ when µn([w]) → µ([w]) for any finite pattern w.
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• Inject A ↪→ Ã = A× {0, 1}.
• Identify F ∼= F̃ = F × {0}.

• Denote M̃B
F (ε) ⊂ MF̃ the measures

with B(ε)⊗Zd Bernoulli noise.

• The set M̃B
F (ε) is weak-* closed,

and
⋂
ε>0

M̃B
F (ε) ≈ MF .

Figure 3: Chequerboard, now with obscured cells.

Reminder (Weak-* Convergence)

We say that µn
∗→ µ when µn([w]) → µ([w]) for any finite pattern w.

6/36



Framework for Noisy Tilings Stability for Periodic Tilings Stability for Aperiodic Tilings Undecidability of the Stability

Clair-Obscur Framework

• Inject A ↪→ Ã = A× {0, 1}.
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Besicovitch Distance
x

x|y y

Figure 4: Frequency of differences between x and y.

Finite Hamming distance:
d13×8(x,

y

) =

33

13×8

≈ 0.3

Hamming-Besicovitch pseudo-distance:
dH = lim sup

n→∞
dn×n

Besicovitch distance on σ-invariant measures:

dB(µ, ν) := inf
λ a coupling

∫
dH(x, y)dλ(x, y) = inf

λ a coupling
λ ([x0 6= y0])
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Stability

Definition (Speed of Stability)
Let f s.t. lim

x→0+
f (x) = 0. The SFT ΩF is f -stable for dB on Bernoulli noises if:

∀ε > 0, sup
λ∈M̃B

F (ε)

dB (π∗
1 (λ),MF ) ≤ f (ε).

Informally, a generic ε-noisy configuration will be at distance f (ε) of a tiling in ΩF .

For the Diluted Domino tileset:

Figure 5:

Around obscured cells, we clear the neighbourhood, and obtain a valid tiling.

Hence, this example is 5ε-stable.

8/36



Framework for Noisy Tilings Stability for Periodic Tilings Stability for Aperiodic Tilings Undecidability of the Stability

Stability

Definition (Speed of Stability)
Let f s.t. lim

x→0+
f (x) = 0. The SFT ΩF is f -stable for dB on Bernoulli noises if:

∀ε > 0, sup
λ∈M̃B

F (ε)

dB (π∗
1 (λ),MF ) ≤ f (ε).

Informally, a generic ε-noisy configuration will be at distance f (ε) of a tiling in ΩF .

For the Diluted Domino tileset:

Figure 5:

Around obscured cells, we clear the neighbourhood, and obtain a valid tiling.

Hence, this example is 5ε-stable.

8/36



Framework for Noisy Tilings Stability for Periodic Tilings Stability for Aperiodic Tilings Undecidability of the Stability

Stability

Definition (Speed of Stability)
Let f s.t. lim

x→0+
f (x) = 0. The SFT ΩF is f -stable for dB on Bernoulli noises if:

∀ε > 0, sup
λ∈M̃B

F (ε)

dB (π∗
1 (λ),MF ) ≤ f (ε).

Informally, a generic ε-noisy configuration will be at distance f (ε) of a tiling in ΩF .

For the Diluted Domino tileset:

Figure 5: Around obscured cells,

we clear the neighbourhood, and obtain a valid tiling.

Hence, this example is 5ε-stable.

8/36



Framework for Noisy Tilings Stability for Periodic Tilings Stability for Aperiodic Tilings Undecidability of the Stability

Stability

Definition (Speed of Stability)
Let f s.t. lim

x→0+
f (x) = 0. The SFT ΩF is f -stable for dB on Bernoulli noises if:

∀ε > 0, sup
λ∈M̃B

F (ε)

dB (π∗
1 (λ),MF ) ≤ f (ε).

Informally, a generic ε-noisy configuration will be at distance f (ε) of a tiling in ΩF .

For the Diluted Domino tileset:

Figure 5: Around obscured cells, we clear the neighbourhood,

and obtain a valid tiling.

Hence, this example is 5ε-stable.

8/36



Framework for Noisy Tilings Stability for Periodic Tilings Stability for Aperiodic Tilings Undecidability of the Stability

Stability

Definition (Speed of Stability)
Let f s.t. lim

x→0+
f (x) = 0. The SFT ΩF is f -stable for dB on Bernoulli noises if:

∀ε > 0, sup
λ∈M̃B

F (ε)

dB (π∗
1 (λ),MF ) ≤ f (ε).

Informally, a generic ε-noisy configuration will be at distance f (ε) of a tiling in ΩF .

For the Diluted Domino tileset:

Figure 5: Around obscured cells, we clear the neighbourhood, and obtain a valid tiling.

Hence, this example is 5ε-stable.

8/36



Framework for Noisy Tilings Stability for Periodic Tilings Stability for Aperiodic Tilings Undecidability of the Stability

Stability

Definition (Speed of Stability)
Let f s.t. lim

x→0+
f (x) = 0. The SFT ΩF is f -stable for dB on Bernoulli noises if:

∀ε > 0, sup
λ∈M̃B

F (ε)

dB (π∗
1 (λ),MF ) ≤ f (ε).

Informally, a generic ε-noisy configuration will be at distance f (ε) of a tiling in ΩF .

For the Diluted Domino tileset:

Figure 5: Around obscured cells, we clear the neighbourhood, and obtain a valid tiling.

Hence, this example is 5ε-stable.
8/36



Framework for Noisy Tilings Stability for Periodic Tilings Stability for Aperiodic Tilings Undecidability of the Stability

Conjugacy Invariance

Theorem [Gayral and Sablik, 2021, Corollary 3.15]
Let f : ΩF → ΩF ′ be a conjugacy, a bi-continuous bijection,
such that, for any k ∈ Zd, we have σk ◦ f = f ◦ σk.

Then ΩF is stable iff ΩF ′ is. In other words, stability is a conjugacy invariant.

What kind of (in)stability results can we expect from typical SFTs?

A fixed-point argument [Durand et al., 2012] already gave a stable aperiodic example.
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Periodic SFT

Figure 6: A periodic configuration,

characterised by a base hypercube that repeats in all directions.
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1D Classification of the Stability

Figure 7: The noisy configuration is at Hamming distance 1
2 of the clear (×◦×◦)∞ ones.

Theorem [Gayral and Sablik, 2021, Theorem 4.8 and Theorem 4.9]
Consider ΩF a 1D SFT. Then ΩF is (linearly) stable on Bernoulli noises iff it is mixing.

Most notably, p-periodic SFTs (with p ≥ 2) are unstable.

11/36



Framework for Noisy Tilings Stability for Periodic Tilings Stability for Aperiodic Tilings Undecidability of the Stability

1D Classification of the Stability

Figure 7: The noisy configuration is at Hamming distance 1
2 of the clear (×◦×◦)∞ ones.

Theorem [Gayral and Sablik, 2021, Theorem 4.8 and Theorem 4.9]
Consider ΩF a 1D SFT. Then ΩF is (linearly) stable on Bernoulli noises iff it is mixing.

Most notably, p-periodic SFTs (with p ≥ 2) are unstable.

11/36



Framework for Noisy Tilings Stability for Periodic Tilings Stability for Aperiodic Tilings Undecidability of the Stability

Periodic Tilings in Higher Dimensions

A SFT ΩF is (strongly) periodic if there exists an integer N such that
any configuration is invariant for any translation in (NZ)d.

Theorem [Gayral and Sablik, 2021, Theorem 5.7]
Consider ΩF a 2D+ periodic SFT.

Then ΩF is f -stable on Bernoulli noises, with linear speed f (ε) = 2Cdc(F)ε.
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Reconstruction Function
Lemma [Gayral and Sablik, 2021, Lemma 5.3]
Consider a 2D+ periodic SFT ΩF .

There exists c(F) ≥
⌈N
2
⌉
such that, for any connected cell window I ⊂ Zd,

if w ∈ AI+Bc is locally admissible, then w|I is globally admissible.

Figure 8: Here, the whole domain contains no forbidden pattern,
but only the blue zone is guaranteed to be the restriction of an actual configuration. 13/36
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Thickened Percolation

Consider ϕn(b)x = max
‖y−x‖∞≤n

by for b ∈ {0, 1}Zd .

Starting from a site percolation ν , we obtain the n-thickened percolation ϕ∗
n(ν).

Figure 9: Illustration of the mapping ϕ1.

Proposition [Gayral and Sablik, 2021, Proposition 5.6]

Consider I ⊂ Zd the random infinite component of the n-thickened B(ε)⊗Zd-percolation.

Then Cdn = 48(2n+ 1)d is such that P(0 /∈ I) ≤ Cdn × ε.

14/36
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The Robinson Tiling

Figure 10: Hierarchical structure of the Robinson tiling.
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Strenghtening the Structure

Figure 11: A Robinson variant, with strengthened local rules.
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High-Density Quasi-Periodic Structure

Figure 12: The density of the grid around N-macro-tiles goes to 0 as N→ ∞. 17/36



Framework for Noisy Tilings Stability for Periodic Tilings Stability for Aperiodic Tilings Undecidability of the Stability

High-Density Quasi-Periodic Structure

Figure 12: The density of the grid around N-macro-tiles goes to 0 as N→ ∞. 17/36



Framework for Noisy Tilings Stability for Periodic Tilings Stability for Aperiodic Tilings Undecidability of the Stability

High-Density Quasi-Periodic Structure

Figure 12: The density of the grid around N-macro-tiles goes to 0 as N→ ∞. 17/36



Stability for Aperiodic Tilings

Aperiodic Stability



Framework for Noisy Tilings Stability for Periodic Tilings Stability for Aperiodic Tilings Undecidability of the Stability

Reconstruction Function for the Enhanced Tiling

Proposition [Gayral and Sablik, 2021, Proposition 7.7]
For any scale N ≥ 2, the constant CN = 2N − 1 is such that
for any integer n and any clear locally admissible pattern w on Bn+CN ,
w|Bn is almost globally admissible, in the sense that up to a low-density grid,
w|Bn is made of well-aligned and well-oriented N-macro-tiles.

Figure 13: Family of well-aligned and well-oriented tiles.
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Non-linear Polynomial Stability

Theorem [Gayral and Sablik, 2021, Proposition 7.8 and Theorem 7.9]

For any ε > 0, any scale N, and any measure µ = π∗
1 (λ) with λ ∈ M̃B

F (ε):

dB (µ,MF ) ≤ 96
(
2N+2 + 1

)2
ε+

1
2N−1

.

Hence, the SFT is f -stable with f (ε) = 48 3
√
6ε.

Could we obtain faster bounds for an aperiodic tiling?
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A Two-Coloured Robinson Tiling

Figure 14: Two-coloured Robinson structure.
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Unstable Colour Flips

Proposition [Gayral, 2021, Proposition 1]
The SFT ΩRB is unstable.

More precisely, for any ε > 0, we have µ ∈ MB
RB(ε) such that dB (µ,MRB) ≥ 1

8 .

Figure 15: The Red-Black alternating structure allows for colour flips.
21/36
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Turing Machines and Decidability

Turing machines are a formal model equivalent to real-life computers and algorithms.

Figure 16: Real-life implementation of a Turing machine (Source: wikimedia.org)

A decision problem is a yes/no question.

A problem is decidable if there is an algorithm that answers it in finite time.

22/36
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The Arithmetical Hierarchy of Undecidable Problems

• The halting problem Phalt on the algorithm ϕ is Σ1-complete:

P(ϕ) ≡ ∃t ∈ N, ϕ(0) terminates in t steps or less

• The totality problem Ptotal on the algorithm ϕ is Π2-complete:

P(ϕ) ≡ ∀n ∈ N,∃t ∈ N, ϕ(n) terminates in t steps or less

Definition (Class of Problems Πk)
Consider a decision problem P : N → {0, 1}.

We have P ∈ Πk if there is a decidable ϕ : Nk+1 → {0, 1} such that:

P(x) ≡ ∀y1 ∈ N,∃y2 ∈ N,∀y3 ∈ N, . . .︸ ︷︷ ︸,
k alternating quantifiers

ϕ (x, y1, . . . , yk)

23/36
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P(ϕ) ≡ ∀n ∈ N,∃t ∈ N, ϕ(n) terminates in t steps or less

Definition (Class of Problems Πk)
Consider a decision problem P : N → {0, 1}.

We have P ∈ Πk if there is a decidable ϕ : Nk+1 → {0, 1} such that:

P(x) ≡ ∀y1 ∈ N,∃y2 ∈ N,∀y3 ∈ N, . . .︸ ︷︷ ︸,
k alternating quantifiers

ϕ (x, y1, . . . , yk)
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Turing Machine Space-Time Diagrams as Tilings

Consider a Turing machine (Q, Γ, I, F, δ) and define the following Wang tiles:

• For any letter a ∈ Γ and any state q ∈ Q:

• For any letter a ∈ Γ and initial state q ∈ I:

• For any letter a ∈ Γ and final state q ∈ F:

• For any transition δ(a,q) = (b,q′, L):

• For any transition δ(a,q) = (b,q′,R):
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Embedding Space-Time Diagrams into Robinson Tilings

Figure 17: The free black tiles encode the diagram, the grey ones are communication channels.
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A Four-Coloured Enhanced Robinson Tiling

Figure 18: The tiling uses an enhanced Robinson structure.
It starts with Black bumpy tiles, alternates between Red and Black,

then may transition to an unstable Blue-Green regime.
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Transition from the Red-Black to the Blue-Green Phase

Figure 19: The transition appears iff there is a final state,
and the colour choice propagates on the border.
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Undecidability of the Stability

Theorem [Gayral, 2021, Theorem 1]
Denote FT the SFT that embeds the Turing machine T into a Robinson tiling.

Then FT is stable (for dB on the class B) iff T does not halt on the empty input.

In the stable case, FT is polynomially stable.

Because the halting problem is Σ1-hard, so is the question of unstability.

Theorem
Stability is Π1-hard.
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Idea for the Stable Case: All N-Macro-Tiles Are Mostly the Same

Figure 20: In a 2N-macro-tile, only O
(
12N

)
tiles out of 16N are ignored.

This gives a 16N × Cε+
( 3
4
)N bound on dB at scale 2N.
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Idea for the Unstable Case: Two Kinds of Widely Different N-Macro-Tiles

We can do the same Blue-Green colour flip as in our Red-Black unstable example.

Figure 21: The transition scale plays the role of 1-macro-tiles for the Blue-Green phase.

If the Turing machine stops in the 2N-macro-tiles,
we guarantee a Ω

( 1
16N

)
density of differences between Blue and Green. 30/36
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Dual Construction for Σ1-Hard Stability

We now use the following Robinson structure:

• Encode two bits (a,b) in the central arm.
• The Red-Black bit a starts as Black and then alternates, for the Turing structure.
• The Blue-Green bit b starts freely and then alternates.
• Whenever the machine stops (necessarily a is Black), b must be Blue.

Thence:

T halts ⇒ One kind of macro-tiles only at big-enough scales ⇒ Stable
T doesn’t stop ⇒ Two kinds of different macro-tiles at all the scales ⇒ Unstable

Theorem
Stability is Σ1-hard.
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Toeplitz Encoding of a Sequence

Figure 22: Toeplitz encoding of the sequence of colours on the left into the Robinson hierarchy.
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Toeplitz Encoding of a Sequence

Figure 23: In practice, we see a finite prefix of the Toeplitz encoding as a read-only input.
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Generalising the Σ1-Hard Construction on Toeplitz Inputs

Consider a Turing machine T with the alphabet Γ = Σ t {#}.

We encode a word w ∈ Σ∗{#}∗ of length N in a (2N+ 1)-macro-tile.

We have three phases in the Robinson hierarchy:

1. Decoding of the Toeplitz sequence into a word w ∈ Σ∗.
⇓

Ignition of the unstable Blue-Green bit.
⇓

2. Partial computation of T on the input w.
⇓

Freezing of the now stable Blue-Green bit.
⇓

3. T halts on w.
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Stability is Π2-Hard

We have 3 situations globally speaking:

• Infinite decoding of an input w ∈ ΣN: stable.
• Halting of T on w ∈ Σ∗: stable.
• Infinite computation of T on w ∈ Σ∗: unstable through colour flips.

We have a family of bounds of the form:

dB (µε,MFT ) ≤ 16ϕ(N) × Cε+
(
3
4

)N

,

with ϕ(N) the scale at which T has halted on all the inputs of length at most N.

If T halts on all the inputs, the bound still goes to 0 as ε → 0,
but cannot be explicit as ϕ can be bigger than any computable function.

Theorem
FT is stable iff T stops on all its entries, which is a Π2-complete problem.
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Could the Problem be Π2-Complete?

Stability of ΩF : ∀δ > 0,∃ε > 0, sup
µ∈MB

F (ε)

dB (µ,MF ) ≤ δ.

By monotonicity we can consider ε, δ ∈ Q+∗.

Theorem
The SFT ΩF is stable iff it satisfies the following formula:

∀δ ∈ Q+∗,∃ε ∈ Q+∗,∀ρ ∈ Q+∗,∃γ ∈ Q+∗, γ ≤ ρ,

∀(w,b) ∈ W̃ε
F (γ),∃w0 ∈ WF (ρ),∃ (w1,w2) ∈

(
A2)Uψ(

ρ,
∣∣∣A2

∣∣∣,d) ,[
d+|A|

(
δ̂w1 , δ̂w

)
< 3ρ

]
∧
[
d+|A|

(
δ̂w2 , δ̂w0

)
< 3ρ

]
∧
[
δ̂(w1,w2)(∆) ≤ δ + |A|2ρ

]
,

with W̃ε
F (γ) andWF (ρ) being finite computable sets,

and Uψ(ρ,|A2|,d) a computable function.

Hence a Π4 upper bound on the problem.
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THE END OF
PRESENTATION
ONE MORE SLIDE:

Thank you.


	Framework for Noisy Tilings
	Stability for Periodic Tilings
	Stability for Aperiodic Tilings
	The Robinson Tiling
	Aperiodic Stability
	Aperiodic Unstability

	Undecidability of the Stability
	Crash Course on Decidability Classes
	Σ₁-Hardness of the Problem
	Climbing the Arithmetical Hierarchy
	Finding an Upper Bound


