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Chaotic Gibbs Measures

General Framework



Subshifts of Finite Type and Forbidden Patterns

- Group G = Z? with 2 generators.
- Alphabet A = {l,[@}.

Figure 1: Example of configuration,
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Subshifts of Finite Type and Forbidden Patterns

Figure 1: Example of configuration,
without occurrences of the forbidden patterns.

- Group G = Z? with 2 generators.

- Alphabet A = {l,[@}.
- Finite set of forbidden patterns F:

post 3

- The SFT is the space Qr c A°

of such configurations.

- Denote Mz the space of

translational-invariant measures.
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Gibbs Measures

Local viewpoint on a finite phase space Q:

- Energy E: Q — RT,
- Inverse Temperature 8 € R¥,
- Gibbs Measure pg(w) := 5 exp(—BE(w)).
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Chaotic Gibb: res Controlling Markers Distribt

Gibbs Measures

Local viewpoint on a finite phase space Q:

- Energy E: Q — RT,
- Inverse Temperature 8 € R¥,
- Gibbs Measure pg(w) := 5 exp(—BE(w)).

Global translational-invariant viewpoint on Q4 = AZ

- Finite range potential f : A" — R* with I, = [r, r]?,
- Pressure function P(u, 8) = h(u) — Bu(f) for p € M4,
* Gibbs measures G(8) = argmax,, P(u, B),

- Ground states G(oo) := Acc (G(5), 8 — o).
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es

A Link Between Worlds

F (forbidden patterns) — Q7 (tilings) — Mz (measures)

f (potential) —  G(B) (Gibbs measures) —  G(co) (ground states)
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Chaotic Gibbs Measures

Chaos Ensues



Chaotic Gibbs Measures Controlling Markers Distribt

Weak Chaoticity

The model is said to be weakly chaotic if:

For any choice of pug € G(B), #Acc (ug, B — o) > 2.

Theorem [Chazottes and Shinoda, 2020, Dalle Vedove, 2020]

There is a 2D set of forbidden patterns F that induces a weakly chaotic system.
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Chaotic Gibbs Measures rs Distribution

Strong Chaoticity

Definition
Assume #G(o0) > 2. The model is said to be strongly chaotic if:

For any choice of ug € G(B), Acc (ug, B — 00) = G(00).

Theorem [Gayral, Sablik and Taati, 2022(?)]

There is a 2D set of forbidden patterns F that induces a strongly chaotic system.

“Conjecture” / WIP

What's more, we can obtain G(oo) = f(X),

with X being any MM,-computable connected subset of M ({0, 1}I),

and f : M ({0,1}™) — Mz an appropriate convex bijection, an affine homeomorphism.
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Controlling Markers Distribution



d(G(8),A) <3 d(g(8),) < 3

d(g(8),N) < 3 d(g(8),N) <3

Figure 2: Alternating between incompatible behaviours on non-overlapping intervals.
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Controlling

General Idea of the Weak Chaoticity

We have two measures A # X st. d (A, A) > r and:

d(G(8). M) < § d(G(8).N) < &
— — N
——— ——— ’ ’B
d(G(8).N) < § d(G(5). X) < §

Figure 2: Alternating between incompatible behaviours on non-overlapping intervals.

Thus Acc (ug) must intersect the disjoint neighbourhoods of both A and X'.

8/23



Chaotic G Meast Controllin

Moving Onto Strong Chaoticity

We want (A\;) and e, — 0 st

d(G(B), M) < e d(G(B), A3) < &3
——~ ——
—_— —_—

d(9(8), X) < e d(G(B), M) < &4

Figure 3: Phasing through similar behaviours on overlapping intervals.
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Chaotic G Meast Controllin

Moving Onto Strong Chaoticity

We want (A\;) and e, — 0 st

d(G(B), M) < e d(G(B), A3) < &3
——~ ——
—_— —_—

d(9(8), X) < e d(G(B), M) < &4

Figure 3: Phasing through similar behaviours on overlapping intervals.

Thus Acc (ug) = G(00) = AcC (An, N — 0).
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Controlling Markers Distribution

Control of Markers on a Temperature Interval

We consider a marker set Q c A8 (with B = I,), made of non-overlapping patterns,
such that any locally admissible tiling w € A'e+»r must contain a marker somewhere.

Theorem [Adapted from Chazottes-Hochman]
Denote G, the admissible tilings of I, and pq the cond. measure on Q of p 4s.
We have constants C, C’ sit. for any marker set Q and e, x > 0, if:

InG#Gn) & (1 _ n#ED g #B s e,

#ln #B €
then for any u € G(3):

w(Qcovers0)=1—0(s+p) and  H(uq) > (1—2k)In(#Q) — H(r) — O(e + p).
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Building an Appropriate Structure
(aka LEGO for Grownups)

The Robinson Tiling(s)



Chaotic G Meast ontrolling Markers Distributic Building an App:

Folkloric Robinson Tiling (Non-Overlapping Markers)
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Figure 4: Hierarchical structure of the Robinson tiling. /
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Building an Appropriate Structure, (aka LEGO for Grownups)
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Enhanced Robinson Tiling (Markers with Reconstruction)

383

Figure 5: A Robinson variant, with strengthened local rules.
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Controlling Markers Distributio Building an Appropriate Structure, (aka LEGO for Grownups)
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Figure 6: Alternating Red-Black structure, with a sparse computation area.
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Chaotic G \easur Controlling Markers Distributio Building an Approp S ure, (aka LEGO f

Structural Properties of the Base Layer

- The n-macro-tile has a length [, = 2" — 1.
- The n-macro-tiles are non-overlapping.

- Any locally admissible window of length 2[, + ¢ contains a n-macro-tile.
(adapted from [Gayral and Sablik, 2021, Proposition 7.7])

- The N-th Red square occurs in a (2N + 1)-macro-tile.
- The N-th Red square has a length 4V +1.

- The N-th Red square has a sparse computing area of horizon 2V + 1.
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Building an Appropriate Structure
(aka LEGO for Grownups)

Structure for Entropy Control
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Hot and Frozen Areas

Red squares may be Blocking, with a Hot exterior and Frozen core.
The rest must locally synchronise on Hot or Frozen.

Figure 7: Admissible configurations for Hot and Frozen squares. 15/2



Chaotic G leasur ) M 0 Building an Appropriate Structure, (aka LEGO for Grownups)

Hot and Frozen Areas

Red squares may be Blocking, with a Hot exterior and Frozen core.
The rest must locally synchronise on Hot or Frozen.

Figure 7: Admissible configurations for Hot and Frozen squares. 15/2



Chaotic G leasur ) M 0 Building an Appropriate Structure, (aka LEGO for Grownups)

Hot and Frozen Areas

Red squares may be Blocking, with a Hot exterior and Frozen core.
The rest must locally synchronise on Hot or Frozen.

Figure 7: Admissible configurations for Hot and Frozen squares. 15/2



Chaotic G Asur Controlling Markers Distributio Building an Appropriate Structure, (aka LEGO for Grownups)

Blockable Scales

We (can) unary encode N as an input for computations in the N-th Red square.
We check whether N = 3. If not, the Red square cannot be Blocking.

Figure 8: The 2nd scale of Red squares cannot be Blocking. -
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Scales for the Marker Sets

* Qp the set of (2 x 3% 4 1)-macro-tiles (Robinson layer) on the window By,
the 3-th scale of locally admissible tiles with Red squares.

- A (k+1)-marker is a grid of 163 x 16> smaller k-markers.

- These gaps in scale will allow for a control on the entropy,
on the speed of convergence of —'“;fg%) 0.
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Chaotic G leasur Controlling Markers Distributio Building an Appropriate Structure, (aka LEGO for Grownups)

Odometer

We implement an odometer in k-markers, that cycles with period t;, = 2Lle&(n(R)]
so that Red squares are Blocking once for each cycle.

Figure 9: The repartition of Frozen squares is forced by the odometer.

The Red square of a (k + 1)-marker initialises k-markers at 0 on one side.
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Repartition of Frozen Tiles
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Figure 10: Approximation of a Total Perspective Vortex.
(One 2-marker would be a 4096 x 4096 grid of such 1-markers.)
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Repartition of Frozen Tiles

The average scale of Blocking squares in a k-marker goes to oo as kR — oc.
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Chaotic G Measur Controlling Markers Distributio Building an Appropriate Structure, (aka LEGO for Grownups)

Encoding Words

Encode a letter on Red lines so that:

- Blocking and Hot squares are labelled 0,
- Frozen squares are labelled 7,
- Neighbouring Frozen squares synchronise their bit.

Generically, a (Frozen) tiling w € Q7 encodes a sequence of bits in {£1}N.
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Building an Appropriate Structure, (aka LEGO for Grownups)

Counting Markers

Let Q, = Qff U QE U Qf depending on whether the Red square is Hot, Blocking or Frozen.

Proposition

Using this result along with the bound on H (uq,),
we conclude that puq, is close to the uniform distribution on QY.
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Forcing a Distribution on Words?

Now that we have a well-behaved structure,
we want to run a Turing machine in each Blocking square,
to force a distribution on the encoded words.

This will easily give us strongly chaotic examples.

The next step will be to study carefully the kind of Turing machines we can use,
to conclude on the kind of limit sets G(oco) we can have.
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THE END OF
PRESENTATION

ONE MORE SLIDE:

Thank you.
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