Théorie des ordres denses sans extrémités

Léo Gayral

2017-2018

ref: DNR - Introduction à la logique, 2e édition - p.130

Définition 1. Soit T_o la théorie sur $\mathcal{L}_o = \{=, <\}$ axiomatisée par :

- $O_1 : \forall x, y \neg (x < y \land y < x)$
- $O_2 : \forall x, y, z (x < y \land y < z \rightarrow x < z)$
- $O_3 : \forall x, y (x < y \lor x = y \lor y < x)$
- $O_4: \forall x, y \exists z (x < y \rightarrow x < z \land z < y)$
- $O_5 : \forall x \exists y \exists z (y < x \land x < z)$

En d'autres termes, T_0 est la théorie des ordres totaux stricts (O_1, O_2) et O_3 , denses (O_4) sans extrémités (O_5) .

Lemme 1. T_0 vérifie les propriétés suivantes :

- T_0 est non contradictoire,
- T_0 admet des modèles non isomorphes,
- Tout modèle de T_0 est infini,
- Tous les modèles dénombrables de T_0 sont isomorphes.

Démonstration.

 \mathbb{Q} et \mathbb{R} sont des modèles de T_0 , qui n'est n'est donc pas contradictoire. En particulier, ces modèles n'ont pas la même cardinalité, donc ne peuvent être isomorphes.

Si un ensemble *fini* est totalement ordonné, il admet nécessairement un maximum, une extrémité.

Considérons maintenant $M, N \models T_0$ deux modèles dénombrables. Ils admettent des énumérations $(a_i)_{i\in\mathbb{N}}$ et $(b_j)_{j\in\mathbb{N}}$. On commence par envoyer a_0 sur b_0 . Si $b_1 > b_0$, on l'envoie sur le premier a_i encore non utilisé tel que $a_i > a_0$. On considère alors a_1 – si on n'a pas déjà envoyé b_1 dessus – qu'on envoie sur un b_j adapté. Par va-et-vient, on obtient une suite croissante de bijections partielles qui préservent l'ordre. En passant à la limite, on obtient l'isomorphisme entre M et N désiré.

Proposition 1 (Admis). Soient T une théorie sur un langage \mathcal{L} , tous deux quelconques. Par définition, T admet l'élimination des quantificateurs lorsque, pour toute formule $F(\overline{x})$, on a G sans quantificateurs telle que :

$$T \vdash \forall \overline{x}(F(\overline{x}) \leftrightarrow G(\overline{x}))$$
.

De façon équivalente, il suffit de le vérifier sur les formules $F(\overline{x})=\exists y H(\overline{x},y)$ où H sans quanteurs, la propriété se propageant aux autres formules par récurrence.

Théorème 1. T_0 admet l'élimination des quanteurs.

Démonstration.

Considérons une formule $\exists x F(x, x_1, \dots, x_n)$. On a :

$$\begin{array}{lll} O_3 & \vdash & \forall x,y \ (\neg(x=y) \leftrightarrow x < y \lor y < x) \ , \\ O_3 & \vdash & \forall x,y \ (\neg(x< y) \leftrightarrow x = y \lor y < x) \ , \\ O_1 & \vdash & \forall x(x=x \leftrightarrow \top) \land (x < x \leftrightarrow \bot) \ . \end{array}$$

La formule F est donc équivalente à une formule $K = \bigvee_k \bigwedge_l H_{k,l}$ sous forme normale disjonctive, où les formules atomiques $H_{k,l}$ sont dans $\{\top, \bot\} \cup \{x = y, x \neq y \in V\} \cup \{x < y, x \neq y \in V\}$.

En outre, $\vdash A \land \top \leftrightarrow A$, $\vdash A \land \bot \leftrightarrow \bot$ et $\vdash A \lor \top \leftrightarrow \top$ et $\vdash A \lor \bot \leftrightarrow A$. Autrement dit, on peut éliminer \top et \bot de K itérativement, quitte à éventuellement constater que F est énonce une tautologie ou une contradiction.

Comme $\vdash (\exists xA \lor B) \leftrightarrow (\exists xA) \lor (\exists xB)$, on se ramène donc au cas où F est équivalente à une formule $K = \bigwedge_l H_l$, où chaque H_l est une formule atomique sous une des formes suivantes :

$$x = x_i, x_i = x_i, x < x_i, x_i < x, x_i < x_i$$

Si un des H_l est un $x = x_i$, alors $\exists x F$ équivaut à $F[x := x_i]$. Sinon, on peut réordonner $K \equiv K_1 \wedge K_2$ où K_1 contient les termes dont aucune variable n'est x, et K_2 qui regroupe les $x < x_i$ et $x_i < x$. On a donc $\exists x F$ qui équivaut à $K_1 \wedge \exists x K_2$. Quitte à réordonner on a de plus :

$$K_2 \equiv \left(\bigwedge_{i \in I} x < x_i \right) \land \left(\bigwedge_{i \in J} x_j < x \right) .$$

En particulier, si $l \in I \cap J \neq \emptyset$, K_2 contient $x_l < x \land x < x_l \leftrightarrow \bot$. Si $I = \emptyset$ (resp. $J = \emptyset$), comme l'ordre n'a pas d'extrémités, $O_5 \vdash \exists x K_2 \leftrightarrow \top$.

$D\'{e}monstration.$

 T_0 admet l'élimination des quantificateurs et \mathcal{L} n'a pas de constantes. Les seules formules sans variables libres ni quantificateurs sont donc trivialement équivalentes à \top ou \bot , c'est donc plus généralement vrai pour toute formules close. Autrement dit, T_0 est complète.

 T_0 est finiment axiomatisée et complète, d'où sa décidabilité. \square