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General Framework Besicovitch Stability Gibbs Measures and Chaos

Tilings with Local Rules

Consider the diluted domino tileset:

Figure 1: This tileset doesn’t force a specific structure.

In general, we will denote A the alphabet, F the forbidden patterns,
and XF ⊂ ΩA := AZd the subshift of admissible tilings.
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Complex Structures

Figure 2: Hierarchical structure of the Robinson tiling.
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Simulating Structures

Figure 3: Bicoloured variant of the Robinson tiling, able to simulate other tilings.
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General Framework Besicovitch Stability Gibbs Measures and Chaos

Computability

• Computation model = computer that manipulates integers
• Decision problem = binary yes·no question
• Undecidable problem = cannot be solved by a computer
• Arithmetical hierarchy = classification of undecidable problems

• Halting problem: Does this algorithm terminate?
Undecidable, Σ1-complete (first ladder of the hierarchy)

• Domino problem: Does this tileset tile the plane?
Halting + simulating tilesets⇒ Domino undecidable, Π1-complete
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Random Tilings

Mσ (XF ) the translation-invariant probability measures on the set of tilings XF .

Weak topology: µn
∗→ µ when µn([w])→ µ([w]) for any finite pattern w ∈ AI.

Metrisable by computable distances⇒ well-suited to a computational study of measures.
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Clair-Obscur Framework

• Inject A ↪→ Ã = A× {0, 1}.
• Identify F ∼= F̃ = F × {0}.

• Denote M̃B
F (ε) ⊂Mσ

(
XF̃

)
the measures

with B(ε)⊗Zd Bernoulli noise.

• The set M̃B
F (ε) is weak-* closed,

and
⋂
ε>0
M̃B

F (ε) ≈Mσ (XF ).
Figure 4: Chequerboard,

with obscured cells.
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Besicovitch Distance

Hamming-Besicovitch pseudo-distance on ΩA: dH(x, y) the frequency of differences.

Besicovitch distance onMσ (ΩA):

dB(µ, ν) := inf
λ a coupling

∫
dH(x, y)dλ(x, y) = inf

λ a coupling
λ ([x0 6= y0])

In general, the set of couplings, and thus dB, is not computable.
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Stability

Definition (Speed of Stability)
Let f s.t. lim

x→0+
f (x) = 0. The SFT XF is f -stable for dB on Bernoulli noises if:

∀ε > 0, sup
λ∈M̃B

F (ε)

dB (π∗
1 (λ),Mσ (XF )) ≤ f (ε).

Informally, a generic ε-noisy configuration will be at distance f (ε) of a tiling in XF .

For the Diluted Domino tileset:

Figure 5:

Around obscured cells, we clear the neighbourhood, and obtain a valid tiling.

Hence, this example is 5ε-stable.
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Context

Theorem (Durand, Romashchenko, and Shen 2012)
There exists a stable aperiodic tileset, obtained using a fixed-point argument.

Informally, the bound on the speed of convergence is 1√
ln(1/ε) .

Theorem (Miękisz 1997)
There exists a variant of the Robinson tiling that is Besicovitch-stable,
when considering the associated family of Gibbs measures.
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One-Dimensional Classification

Proposition
Let XF be a one-dimensional SFT.

Then XF is (linearly) stable iff it is mixing.

Figure 6: The noisy configuration is at Hamming distance 1
2 of the clear (×◦×◦)∞ ones.
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Stable Structures in Higher Dimensions
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Periodic Tilings in Higher Dimensions

An SFT XF is (strongly) periodic if there exists an integer N such that
any configuration is invariant for any translation in (NZ)d.

Theorem
Consider XF a 2D+ periodic SFT.

Then XF is f -stable on Bernoulli noises, with linear speed f (ε) = 2Cdc(F)ε.
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Reconstruction Function
Lemma
Consider a 2D+ periodic SFT XF .

There exists c(F) ≥
⌈N
2
⌉
such that, for any connected cell window I ⊂ Zd,

if w ∈ AI+Bc is locally admissible, then w|I is globally admissible.

Figure 7: Here, the whole domain contains no forbidden pattern,
but only the blue zone is guaranteed to be the restriction of an actual configuration. 14/33
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Thickened Percolation

Consider ϕn(b)x = max
‖y−x‖∞≤n

by for b ∈ {0, 1}Z
d .

Starting from a site percolation ν , we obtain the n-thickened percolation ϕ∗
n(ν).

Figure 8: Illustration of the mapping ϕ1.

Proposition

Consider I ⊂ Zd the random infinite component of the n-thickened B(ε)⊗Zd-percolation.

Then Cdn = 48(2n+ 1)d is such that P(0 /∈ I) ≤ Cdn × ε.
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High-Density Quasi-Periodic Structure in the (Enhanced) Robinson Tiling

Figure 9: The density of the grid around N-macro-tiles goes to 0 as N→ ∞. 16/33
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Non-linear Polynomial Stability

Theorem
Let XER be the enhanced Robinson SFT.

For any ε > 0, any scale N, and any measure µ = π∗
1 (λ) with λ ∈ M̃B

ER(ε):

dB (µ,Mσ (XER)) ≤ 96
(
2N+2 + 1

)2
ε+

1
2N−1

.

Hence, the SFT is f -stable with f (ε) = 48 3
√
6ε.

Could we obtain faster bounds for an aperiodic tiling?
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Unstable Colour Flips

Proposition
The Red-Black Robinson SFT XRB is unstable.

More precisely, for any ε > 0, we have µ ∈MB
RB(ε) such that dB (µ,Mσ (XRB)) ≥ 1

8 .

Figure 10: The Red-Black alternating structure allows for colour flips.
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Undecidability of Stability

Theorem
Deciding whether F induces a Besicovitch-stable SFT is Π2-hard,
and at most Π4 in the arithmetical hierarchy.
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Gallery
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Gibbs Measures on Finite Spaces

• Ω a finite set of states.
• E : Ω→ R+ an energy function.
• β the inverse temperature.

Theorem (Variational Principle)
The distribution µβ(ω) ∝ exp (−βE(ω)) is the only maximiser of µ 7→ H(µ)− βµ(E),
with H(µ) :=

∑
− log2(µ(ω))µ(ω) the entropy.

We call µβ a Gibbs measure.

• At high temperatures, as β → 0, we converge to the uniform distribution U(Ω),
that maximises H.

• At low temperatures, as β →∞, we converge to the uniform distribution U (Ω∗),
that maximises H among measures of minimal energy, supported by Ω∗ := argmin(E).
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Invariant Gibbs Measures on Lattice Models

• Now, ΩA := AZd is the phase space.
• ϕ : ΩA → R+ is a continuous potential, the contribution of 0 ∈ Zd to the energy.

Definition (Pressure Function)
Define the pressure pµ(β) := h(µ)− βµ(ϕ),
with h(µ) := lim 1

ndH
(
µJ0,n−1Kd

)
the entropy per site.

Let Gσ(β) := argmaxµ∈Mσ
pµ(β) the set of Gibbs measures.

• ϕ has finite range if it is locally constant, if ϕ(ω) only depends on ωJ−r,rKd .
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Limit Behaviour for Ground States

• We call (µβ ∈ Gσ(β))β>0 a cooling trajectory of the model.
• Denote Gσ(∞) := Accβ→∞ Gσ(β) the set of ground states,
of accumulation points of all the cooling trajectories.

Lemma
Assume that X :=

{
ω ∈ ΩA,∀x ∈ Zd, ϕ ◦ σx(ω) = 0

}
6= ∅.

Then Gσ(∞) ⊂Mσ(X), and the ground states have maximal entropy h inMσ(X).

• Measures that maximise h inMσ(X) are not necessarily in Gσ(∞).

What can we ask about Gσ(∞)?
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Stability and Chaos

Definition (Stability)
A model is stable if all the cooling trajectories converge to the same limit.

Definition (Chaoticity)
A model is chaotic if there is no converging cooling trajectory.

Definition (Uniformity)
A model is uniform if all the cooling trajectories have the same accumulation set.
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Recap of Behaviours

Chaoticity:

∀ν, ∀ (µβ) , µβ 6→ ν

Stability:

∃ν, ∀ (µβ) , µβ → ν

Figure 11: Inventory and comparison of model behaviours.
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Current Knowledge

Lemma (Brémont 2003)
A one-dimensional finite range model induces a stable model.

Theorem (Chazottes and Hochman 2010)
There exists a one-dimensional potential inducing a chaotic model.

There exists a three-dimensional finite range potential inducing a chaotic model.

Theorem (Chazottes and Shinoda 2020; Barbieri et al. 2022)
There exists a two-dimensional finite range potential inducing a chaotic model.
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Topological Obstruction on the Accumulation Set

Proposition
For any potential ϕ, the set Gσ(∞) is connected.

Figure 12: The graph of β 7→ Gσ(β) is connected.
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Computational Obstruction on the Accumulation Set

Forbidden patterns induce only countably many potentials (and accumulation sets).
What are we missing?

Proposition
For any computable potential ϕ inducing a uniform model, Gσ(∞) is Π2-computable.

Without the uniformity assumption, we have a Π3 upper bound instead.

Notably, Π2-computable sets can be characterised as limit sets of computable sequences.
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General Idea for Chaoticity

We have two measures µ 6= µ′ s.t. d (µ, µ′) ≥ r and:

β
︷ ︸︸ ︷d (Gσ(β), µ) ≤ r

3

︸ ︷︷ ︸
d (Gσ(β), µ′) ≤ r

3

︷ ︸︸ ︷d (Gσ(β), µ) ≤ r
3

︸ ︷︷ ︸
d (Gσ(β), µ′) ≤ r

3

Figure 13: Alternating between mutually exclusive adherence values on non-overlapping intervals.

Thus Acc (µβ) intersects the disjoint neighbourhoods of both µ and µ′.
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General Idea for Uniformity

We want (µn) and εn → 0 s.t.:

β
︷ ︸︸ ︷d (Gσ(β), µ1) ≤ ε1

︸ ︷︷ ︸
d (Gσ(β), µ2) ≤ ε2

︷ ︸︸ ︷d (Gσ(β), µ3) ≤ ε3

︸ ︷︷ ︸
d (Gσ(β), µ4) ≤ ε4

Figure 14: Contracting tube of measures with overlapping intervals.

Thus Acc (µβ) = Gσ(∞) = Acc (µn).
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Realisation Result on the Limit Set

Theorem
There exists a class of two-dimensional finite range potentials,
inducing uniform models both stable and chaotic.

More precisely, we can realise any connected Π2-computable compact set X as Gσ(∞),
up to a fixed computable affine homeomorphism.

Corollary
The question of whether a computable ϕ induces a chaotic model is Σ3-complete.
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THE END OF
PRESENTATION
ONE MORE SLIDE:

Thank you.
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