Complexité et robustesse des pavages avec perturbations aléatoires

Léo Gayral 23/06/2023, Soutenance de thèse

IMT, Université Toulouse III Paul Sabatier

General Framework

Besicovitch Stability

Bernoulli Framework

Stable Structures in Higher Dimensions

Gibbs Measures and Chaos

Thermodynamic Framework

Obstructions and Realisation

General Framework

Tilings with Local Rules

Consider the *diluted domino* tileset:

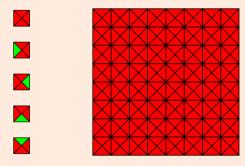


Figure 1: This tileset doesn't force a specific structure.

Tilings with Local Rules

Consider the *diluted domino* tileset:

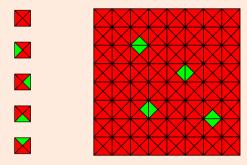


Figure 1: This tileset doesn't force a specific structure.

Tilings with Local Rules

Consider the *diluted domino* tileset:

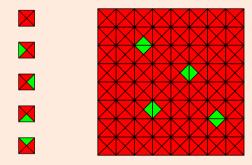
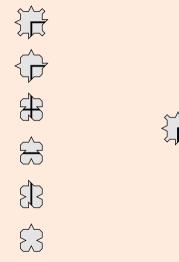
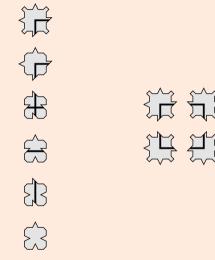
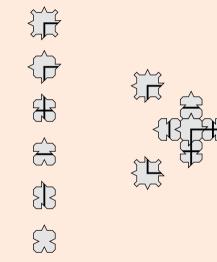


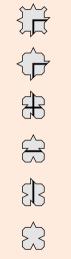
Figure 1: This tileset doesn't force a specific structure.

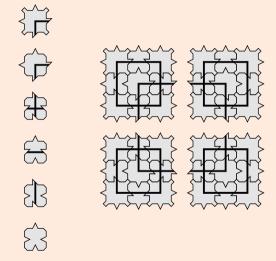
In general, we will denote \mathcal{A} the alphabet, \mathcal{F} the forbidden patterns, and $X_{\mathcal{F}} \subset \Omega_{\mathcal{A}} := \mathcal{A}^{\mathbb{Z}^d}$ the subshift of admissible tilings.

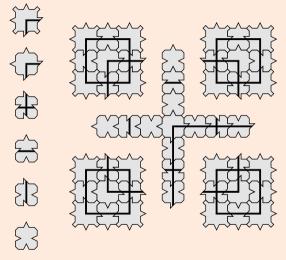


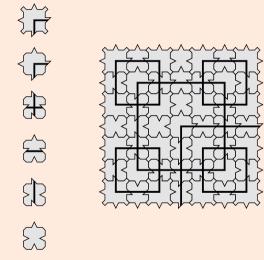












Simulating Structures

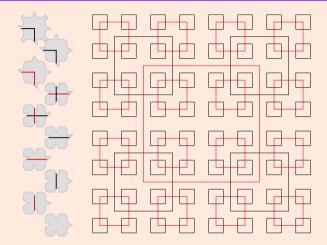


Figure 3: Bicoloured variant of the Robinson tiling, able to simulate other tilings.

Simulating Structures

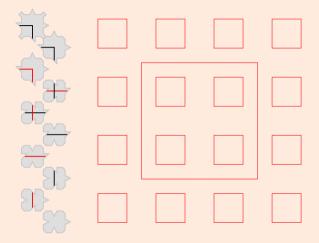


Figure 3: Bicoloured variant of the Robinson tiling, able to simulate other tilings.

Simulating Structures

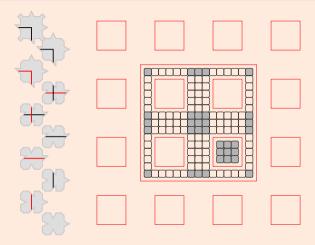


Figure 3: Bicoloured variant of the Robinson tiling, able to simulate other tilings.

Computability

- Computation model = computer that manipulates integers
- Decision problem = binary *yes*·*no* question
- Undecidable problem = cannot be solved by a computer
- Arithmetical hierarchy = classification of undecidable problems

Computability

- Computation model = computer that manipulates integers
- Decision problem = binary *yes*·*no* question
- Undecidable problem = cannot be solved by a computer
- Arithmetical hierarchy = classification of undecidable problems
- Halting problem: Does this algorithm terminate? Undecidable, Σ_1 -complete (first ladder of the hierarchy)

Computability

- Computation model = computer that manipulates integers
- Decision problem = binary *yes*·*no* question
- Undecidable problem = cannot be solved by a computer
- Arithmetical hierarchy = classification of undecidable problems
- Halting problem: Does this algorithm terminate? Undecidable, Σ_1 -complete (first ladder of the hierarchy)
- Domino problem: Does this tileset tile the plane? Halting + simulating tilesets \Rightarrow Domino undecidable, Π_1 -complete

Random Tilings

$\mathcal{M}_{\sigma}(X_{\mathcal{F}})$ the translation-invariant probability measures on the set of tilings $X_{\mathcal{F}}$.

Weak topology: $\mu_n \xrightarrow{*} \mu$ when $\mu_n([w]) \rightarrow \mu([w])$ for any finite pattern $w \in \mathcal{A}^l$. Metrisable by computable distances \Rightarrow well-suited to a computational study of measures.

Besicovitch Stability

Besicovitch Stability

Bernoulli Framework

- Inject $\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$
- Identify $\mathcal{F} \cong \widetilde{\mathcal{F}} = \mathcal{F} \times \{0\}.$
- Denote $\widetilde{\mathcal{M}}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon) \subset \mathcal{M}_{\sigma}(X_{\widetilde{\mathcal{F}}})$ the measures with $\mathcal{B}(\varepsilon)^{\otimes \mathbb{Z}^d}$ Bernoulli noise.
- The set $\widetilde{\mathcal{M}}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon)$ is weak-* closed, and $\bigcap_{\varepsilon>0} \widetilde{\mathcal{M}}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon) \approx \mathcal{M}_{\sigma}(X_{\mathcal{F}}).$

×	0	×	0	×	0	×	0	×	0	×	0	\times
0	0	×	0	0	×	×	0	×	0	×	0	×
×	0	0	0	0	0	×	×	0	0	×	0	\times
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	\times
0	0	×	×	×	×	0	×	0	0	×	0	\times
×	×	×	0	×	0	0	×	×	0	0	0	\times
0	×	0	×	0	×	×	×	×	×	0	×	0

Figure 4: Chequerboard,

- Inject $\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$
- Identify $\mathcal{F} \cong \widetilde{\mathcal{F}} = \mathcal{F} \times \{0\}.$
- Denote $\widetilde{\mathcal{M}}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon) \subset \mathcal{M}_{\sigma}(X_{\widetilde{\mathcal{F}}})$ the measures with $\mathcal{B}(\varepsilon)^{\otimes \mathbb{Z}^d}$ Bernoulli noise.
- The set $\widetilde{\mathcal{M}}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon)$ is weak-* closed, and $\bigcap_{\varepsilon>0} \widetilde{\mathcal{M}}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon) \approx \mathcal{M}_{\sigma}(X_{\mathcal{F}}).$

×	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	×
×	0	0	0	0	0	×	×	0	0	×	0	\times
0	\times	×	×	0	\times	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	×
0	0	×	×	×	×	0	×	0	0	×	0	×
×	\times	×	0	×	0	0	×	×	0	0	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

Figure 4: Chequerboard, with obscured cells.

- Inject $\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$
- Identify $\mathcal{F} \cong \widetilde{\mathcal{F}} = \mathcal{F} \times \{0\}.$
- Denote $\widetilde{\mathcal{M}}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon) \subset \mathcal{M}_{\sigma}(X_{\widetilde{\mathcal{F}}})$ the measures with $\mathcal{B}(\varepsilon)^{\otimes \mathbb{Z}^d}$ Bernoulli noise.
- The set $\widetilde{\mathcal{M}}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon)$ is weak-* closed, and $\bigcap_{\varepsilon>0} \widetilde{\mathcal{M}}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon) \approx \mathcal{M}_{\sigma}(X_{\mathcal{F}}).$

\times	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	×
×	0	0	0	0	0	\times	×	0	0	\times	0	\times
0	\times	×	×	0	\times	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	×
0	0	×	×	×	×	0	×	0	0	×	0	\times
×	×	×	0	×	0	0	×	×	0	0	0	\times
0	\times	0	×	0	×	×	×	×	×	0	×	0

Figure 4: Chequerboard, with obscured cells.

- Inject $\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$
- Identify $\mathcal{F} \cong \widetilde{\mathcal{F}} = \mathcal{F} \times \{0\}.$
- Denote $\widetilde{\mathcal{M}}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon) \subset \mathcal{M}_{\sigma}(X_{\widetilde{\mathcal{F}}})$ the measures with $\mathcal{B}(\varepsilon)^{\otimes \mathbb{Z}^d}$ Bernoulli noise.
- The set $\widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)$ is weak-* closed, and $\bigcap_{\varepsilon>0} \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon) \approx \mathcal{M}_{\sigma}(X_{\mathcal{F}}).$

\times	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	\times
×	0	0	0	0	0	×	×	0	0	×	0	\times
0	\times	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	×
0	0	×	×	×	×	0	×	0	0	×	0	×
×	×	×	0	×	0	0	×	×	0	0	0	\times
0	\times	0	×	0	×	×	×	×	×	0	×	0

Figure 4: Chequerboard, with obscured cells.

Besicovitch Distance

Hamming-Besicovitch pseudo-distance on Ω_A : $d_H(x, y)$ the frequency of differences.

Besicovitch distance on $\mathcal{M}_{\sigma}(\Omega_{\mathcal{A}})$:

$$d_{B}(\mu,\nu) := \inf_{\lambda \text{ a coupling}} \int d_{H}(x,y) d\lambda(x,y) = \inf_{\lambda \text{ a coupling}} \lambda \left([x_{0} \neq y_{0}] \right)$$

In general, the set of couplings, and thus d_B , is not computable.

Definition (Speed of Stability)

Let f s.t. $\lim_{x\to 0^+} f(x) = 0$. The SFT $X_{\mathcal{F}}$ is f-stable for d_B on Bernoulli noises if:

$$\forall \varepsilon > 0, \sup_{\lambda \in \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)} d_{\mathcal{B}}(\pi_{1}^{*}(\lambda), \mathcal{M}_{\sigma}(X_{\mathcal{F}})) \leq f(\varepsilon).$$

Informally, a generic ε -noisy configuration will be at distance $f(\varepsilon)$ of a tiling in $X_{\mathcal{F}}$.

Definition (Speed of Stability)

Let f s.t. $\lim_{x\to 0^+} f(x) = 0$. The SFT $X_{\mathcal{F}}$ is f-stable for d_B on Bernoulli noises if:

$$\forall \varepsilon > 0, \sup_{\lambda \in \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)} d_{\mathcal{B}}(\pi_{1}^{*}(\lambda), \mathcal{M}_{\sigma}(X_{\mathcal{F}})) \leq f(\varepsilon).$$

Informally, a generic ε -noisy configuration will be at distance $f(\varepsilon)$ of a tiling in $X_{\mathcal{F}}$.

For the Diluted Domino tileset:

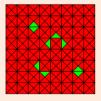


Figure 5:

Definition (Speed of Stability)

Let f s.t. $\lim_{x\to 0^+} f(x) = 0$. The SFT $X_{\mathcal{F}}$ is f-stable for d_B on Bernoulli noises if:

$$\forall \varepsilon > 0, \sup_{\lambda \in \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)} d_{\mathcal{B}}(\pi_{1}^{*}(\lambda), \mathcal{M}_{\sigma}(X_{\mathcal{F}})) \leq f(\varepsilon).$$

Informally, a generic ε -noisy configuration will be at distance $f(\varepsilon)$ of a tiling in $X_{\mathcal{F}}$.

For the Diluted Domino tileset:

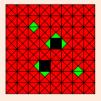


Figure 5: Around obscured cells,

Definition (Speed of Stability)

Let f s.t. $\lim_{x\to 0^+} f(x) = 0$. The SFT $X_{\mathcal{F}}$ is f-stable for d_B on Bernoulli noises if:

$$\forall \varepsilon > 0, \sup_{\lambda \in \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)} d_{\mathcal{B}}(\pi_{1}^{*}(\lambda), \mathcal{M}_{\sigma}(X_{\mathcal{F}})) \leq f(\varepsilon).$$

Informally, a generic ε -noisy configuration will be at distance $f(\varepsilon)$ of a tiling in $X_{\mathcal{F}}$.

For the Diluted Domino tileset:

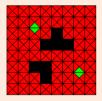


Figure 5: Around obscured cells, we clear the neighbourhood,

Definition (Speed of Stability)

Let f s.t. $\lim_{x\to 0^+} f(x) = 0$. The SFT $X_{\mathcal{F}}$ is f-stable for d_B on Bernoulli noises if:

$$\forall \varepsilon > 0, \sup_{\lambda \in \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)} d_{\mathcal{B}}(\pi_{1}^{*}(\lambda), \mathcal{M}_{\sigma}(X_{\mathcal{F}})) \leq f(\varepsilon).$$

Informally, a generic ε -noisy configuration will be at distance $f(\varepsilon)$ of a tiling in $X_{\mathcal{F}}$.

For the Diluted Domino tileset:

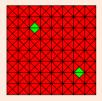


Figure 5: Around obscured cells, we clear the neighbourhood, and obtain a valid tiling.

Definition (Speed of Stability)

Let f s.t. $\lim_{x\to 0^+} f(x) = 0$. The SFT $X_{\mathcal{F}}$ is f-stable for d_B on Bernoulli noises if:

$$\forall \varepsilon > 0, \sup_{\lambda \in \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)} d_{\mathcal{B}}(\pi_{1}^{*}(\lambda), \mathcal{M}_{\sigma}(X_{\mathcal{F}})) \leq f(\varepsilon).$$

Informally, a generic ε -noisy configuration will be at distance $f(\varepsilon)$ of a tiling in $X_{\mathcal{F}}$.

For the Diluted Domino tileset:

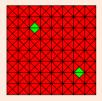


Figure 5: Around obscured cells, we clear the neighbourhood, and obtain a valid tiling. Hence, this example is 5ε -stable.

Context

Theorem (Durand, Romashchenko, and Shen 2012)

There exists a stable aperiodic tileset, obtained using a fixed-point argument.

Informally, the bound on the speed of convergence is $\frac{1}{\sqrt{\ln(1/\epsilon)}}$.

Theorem (Miękisz 1997)

There exists a variant of the Robinson tiling that is Besicovitch-stable, when considering the associated family of Gibbs measures.

One-Dimensional Classification

Proposition

Let $X_{\mathcal{F}}$ be a one-dimensional SFT.

Then $X_{\mathcal{F}}$ is (linearly) stable iff it is mixing.

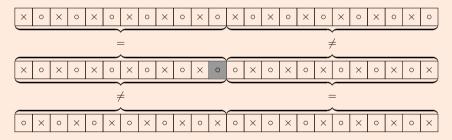


Figure 6: The noisy configuration is at Hamming distance $\frac{1}{2}$ of the clear $(\times \circ \times \circ)^{\infty}$ ones.

Besicovitch Stability

Stable Structures in Higher Dimensions

Periodic Tilings in Higher Dimensions

An SFT $X_{\mathcal{F}}$ is (strongly) periodic if there exists an integer N such that any configuration is invariant for any translation in $(N\mathbb{Z})^d$.

Theorem

Consider $X_{\mathcal{F}}$ a 2D+ periodic SFT.

Then $X_{\mathcal{F}}$ is f-stable on Bernoulli noises, with linear speed $f(\varepsilon) = 2C_{c(\mathcal{F})}^{d}\varepsilon$.

Reconstruction Function

Lemma

Consider a 2D+ periodic SFT $X_{\mathcal{F}}$.

There exists $c(\mathcal{F}) \geq \lfloor \frac{N}{2} \rfloor$ such that, for any connected cell window $I \subset \mathbb{Z}^d$, if $w \in \mathcal{A}^{I+B_c}$ is locally admissible, then $w|_I$ is globally admissible.

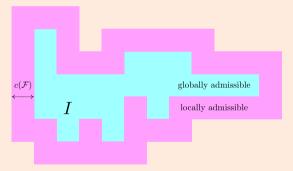


Figure 7: Here, the whole domain contains no forbidden pattern, but only the blue zone is guaranteed to be the restriction of an actual configuration.

Thickened Percolation

Consider
$$\varphi_n(b)_x = \max_{\|y-x\|_{\infty} \le n} b_y$$
 for $b \in \{0,1\}^{\mathbb{Z}^d}$.

Starting from a site percolation ν , we obtain the *n*-thickened percolation $\varphi_n^*(\nu)$.

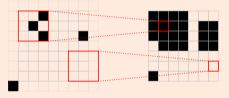


Figure 8: Illustration of the mapping φ_1 .

Proposition

Consider $I \subset \mathbb{Z}^d$ the random infinite component of the n-thickened $\mathcal{B}(\varepsilon)^{\otimes \mathbb{Z}^d}$ -percolation. Then $C_n^d = 48(2n+1)^d$ is such that $\mathbb{P}(0 \notin I) \leq C_n^d \times \varepsilon$.

High-Density Quasi-Periodic Structure in the (Enhanced) Robinson Tiling

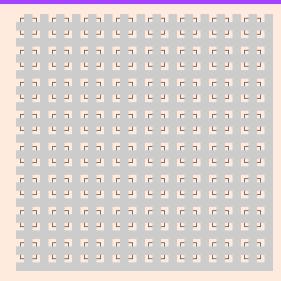


Figure 9: The density of the grid around *N*-macro-tiles goes to 0 as $N \rightarrow \infty$.

High-Density Quasi-Periodic Structure in the (Enhanced) Robinson Tiling

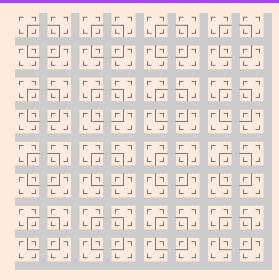


Figure 9: The density of the grid around *N*-macro-tiles goes to 0 as $N \rightarrow \infty$.

High-Density Quasi-Periodic Structure in the (Enhanced) Robinson Tiling

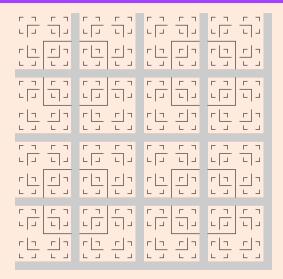


Figure 9: The density of the grid around *N*-macro-tiles goes to 0 as $N \rightarrow \infty$.

Non-linear Polynomial Stability

Theorem

```
Let X<sub>ER</sub> be the enhanced Robinson SFT.
```

For any $\varepsilon > 0$, any scale N, and any measure $\mu = \pi_1^*(\lambda)$ with $\lambda \in \widetilde{\mathcal{M}_{ER}^{\mathcal{B}}}(\varepsilon)$:

$$d_B\left(\mu, \mathcal{M}_{\sigma}\left(X_{ER}\right)\right) \leq 96\left(2^{N+2}+1\right)^2 \varepsilon + \frac{1}{2^{N-1}}.$$

Hence, the SFT is f-stable with $f(\varepsilon) = 48\sqrt[3]{6\varepsilon}$.

Could we obtain faster bounds for an aperiodic tiling?

Unstable Colour Flips

Proposition

The Red-Black Robinson SFT X_{RB} is unstable.

More precisely, for any $\varepsilon > 0$, we have $\mu \in \mathcal{M}_{RB}^{\mathcal{B}}(\varepsilon)$ such that $d_B(\mu, \mathcal{M}_{\sigma}(X_{RB})) \geq \frac{1}{8}$.

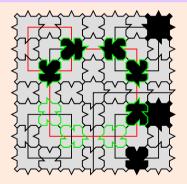
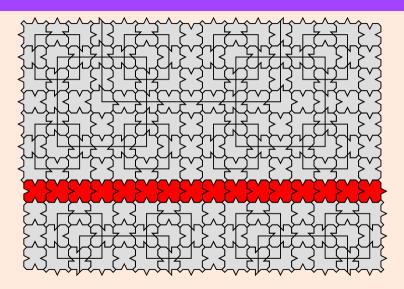


Figure 10: The Red-Black alternating structure allows for colour flips.

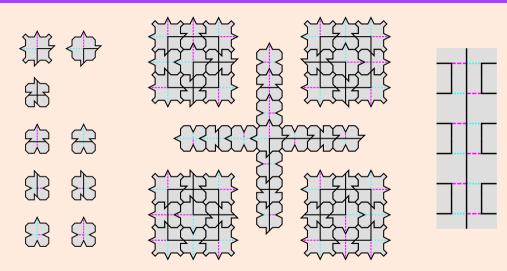
Undecidability of Stability

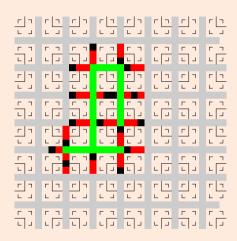
Theorem

Deciding whether \mathcal{F} induces a Besicovitch-stable SFT is Π_2 -hard, and at most Π_4 in the arithmetical hierarchy.



Gallery





0 <u>00</u> 00 <u>000000000000000000000000000000</u>	
	0000 0000
	000000000000000000000000000000000000000
000000000000000	1000000000000000000
0000 0000	0000 0000
8098 8098	
000000000000000	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
000000000000000000000000000000000000000	00000000000000000
8008 8008	8008
000000000000000	00000000000000000
	000000000000000000000000000000000000000
	00000000000000000
0000 0000000 000000 0000	

Gibbs Measures and Chaos

Gibbs Measures and Chaos

Thermodynamic Framework

Gibbs Measures on Finite Spaces

- Ω a finite set of states.
- + $E:\Omega \to \mathbb{R}^+$ an energy function.
- β the inverse temperature.

Theorem (Variational Principle)

The distribution $\mu_{\beta}(\omega) \propto \exp(-\beta E(\omega))$ is the only maximiser of $\mu \mapsto H(\mu) - \beta \mu(E)$, with $H(\mu) := \sum -\log_2(\mu(\omega))\mu(\omega)$ the entropy.

We call μ_{β} a Gibbs measure.

Gibbs Measures on Finite Spaces

- $\cdot \,\, \Omega$ a finite set of states.
- · $E:\Omega\to \mathbb{R}^+$ an energy function.
- β the inverse temperature.

Theorem (Variational Principle)

The distribution $\mu_{\beta}(\omega) \propto \exp(-\beta E(\omega))$ is the only maximiser of $\mu \mapsto H(\mu) - \beta \mu(E)$, with $H(\mu) := \sum -\log_2(\mu(\omega))\mu(\omega)$ the entropy.

We call μ_{eta} a Gibbs measure.

- At high temperatures, as $\beta \to 0$, we converge to the uniform distribution $\mathcal{U}(\Omega)$, that maximises *H*.
- At low temperatures, as $\beta \to \infty$, we converge to the uniform distribution $\mathcal{U}(\Omega^*)$, that maximises H among measures of minimal energy, supported by $\Omega^* := \arg \min(E)$.

Invariant Gibbs Measures on Lattice Models

- Now, $\Omega_{\mathcal{A}} := \mathcal{A}^{\mathbb{Z}^d}$ is the phase space.
- $\varphi: \Omega_A \to \mathbb{R}^+$ is a continuous potential, the contribution of $0 \in \mathbb{Z}^d$ to the energy.

Definition (Pressure Function)

Define the pressure $p_{\mu}(\beta) := h(\mu) - \beta \mu(\varphi)$, with $h(\mu) := \lim \frac{1}{n^d} H\left(\mu_{[\![0,n-1]\!]^d}\right)$ the entropy per site. Let $\mathcal{G}_{\sigma}(\beta) := \arg \max_{\mu \in \mathcal{M}_{\sigma}} p_{\mu}(\beta)$ the set of Gibbs measures.

• φ has finite range if it is *locally constant*, if $\varphi(\omega)$ only depends on $\omega_{[-r,r]^d}$.

Limit Behaviour for Ground States

- We call $(\mu_{\beta} \in \mathcal{G}_{\sigma}(\beta))_{\beta>0}$ a *cooling trajectory* of the model.
- Denote $\mathcal{G}_{\sigma}(\infty) := \operatorname{Acc}_{\beta \to \infty} \mathcal{G}_{\sigma}(\beta)$ the set of *ground states*, of accumulation points of all the cooling trajectories.

Limit Behaviour for Ground States

- We call $(\mu_{\beta} \in \mathcal{G}_{\sigma}(\beta))_{\beta>0}$ a *cooling trajectory* of the model.
- Denote $\mathcal{G}_{\sigma}(\infty) := \operatorname{Acc}_{\beta \to \infty} \mathcal{G}_{\sigma}(\beta)$ the set of *ground states*, of accumulation points of all the cooling trajectories.

Lemma

Assume that $X := \{ \omega \in \Omega_A, \forall x \in \mathbb{Z}^d, \varphi \circ \sigma^x(\omega) = 0 \} \neq \emptyset.$ Then $\mathcal{G}_{\sigma}(\infty) \subset \mathcal{M}_{\sigma}(X)$, and the ground states have maximal entropy h in $\mathcal{M}_{\sigma}(X)$.

• Measures that maximise h in $\mathcal{M}_{\sigma}(X)$ are not necessarily in $\mathcal{G}_{\sigma}(\infty)$.

What can we ask about $\mathcal{G}_{\sigma}(\infty)$?

Stability and Chaos

Definition (Stability)

A model is stable if all the cooling trajectories converge to the same limit.

Definition (Chaoticity)

A model is chaotic if there is no converging cooling trajectory.

Definition (Uniformity)

A model is uniform if all the cooling trajectories have the same accumulation set.

Recap of Behaviours

Chaoticity:	Stability:
$\forall \nu, \forall \left(\mu_\beta \right), \mu_\beta \not \to \nu$	$\exists \nu, \forall \left(\mu_\beta \right), \mu_\beta \rightarrow \nu$

Figure 11: Inventory and comparison of model behaviours.

Recap of Behaviours

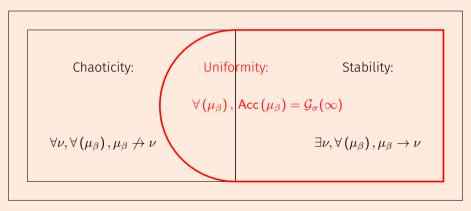


Figure 11: Inventory and comparison of model behaviours.

Recap of Behaviours

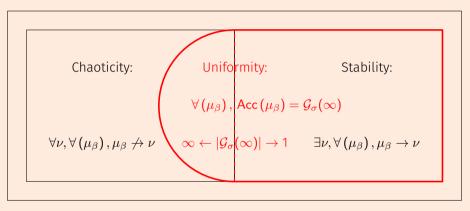


Figure 11: Inventory and comparison of model behaviours.

Current Knowledge

Lemma (Brémont 2003)

A one-dimensional finite range model induces a stable model.

Theorem (Chazottes and Hochman 2010)

There exists a one-dimensional potential inducing a chaotic model.

There exists a three-dimensional finite range potential inducing a chaotic model.

Theorem (Chazottes and Shinoda 2020; Barbieri et al. 2022)

There exists a two-dimensional finite range potential inducing a chaotic model.

Gibbs Measures and Chaos

Obstructions and Realisation

Topological Obstruction on the Accumulation Set

Proposition

For any potential φ , the set $\mathcal{G}_{\sigma}(\infty)$ is connected.

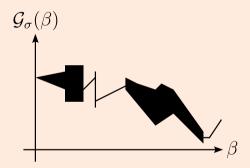


Figure 12: The graph of $\beta \mapsto \mathcal{G}_{\sigma}(\beta)$ is connected.

Computational Obstruction on the Accumulation Set

Forbidden patterns induce only countably many potentials (and accumulation sets). What are we missing?

Computational Obstruction on the Accumulation Set

Forbidden patterns induce only countably many potentials (and accumulation sets). What are we missing?

Proposition

For any computable potential φ inducing a uniform model, $\mathcal{G}_{\sigma}(\infty)$ is Π_2 -computable. Without the uniformity assumption, we have a Π_3 upper bound instead.

Notably, Π_2 -computable sets can be characterised as limit sets of computable sequences.

General Idea for Chaoticity

We have two measures $\mu \neq \mu'$ s.t. $d(\mu, \mu') \geq r$ and:

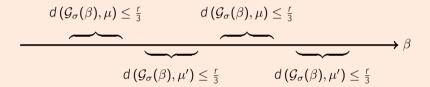


Figure 13: Alternating between mutually exclusive adherence values on non-overlapping intervals.

General Idea for Chaoticity

We have two measures $\mu \neq \mu'$ s.t. $d(\mu, \mu') \geq r$ and:

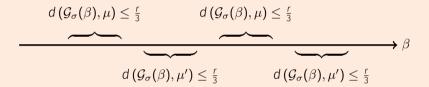


Figure 13: Alternating between mutually exclusive adherence values on non-overlapping intervals.

Thus Acc (μ_{β}) intersects the disjoint neighbourhoods of both μ and μ' .

General Idea for Uniformity

We want (μ_n) and $\varepsilon_n \rightarrow 0$ s.t.:

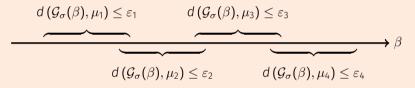


Figure 14: Contracting tube of measures with overlapping intervals.

General Idea for Uniformity

We want (μ_n) and $\varepsilon_n \rightarrow 0$ s.t.:

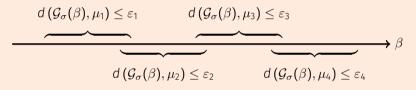


Figure 14: Contracting tube of measures with overlapping intervals.

Thus $\operatorname{Acc}(\mu_{\beta}) = \mathcal{G}_{\sigma}(\infty) = \operatorname{Acc}(\mu_{n}).$

Realisation Result on the Limit Set

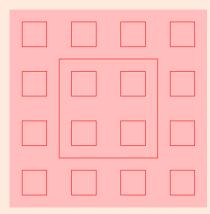
Theorem

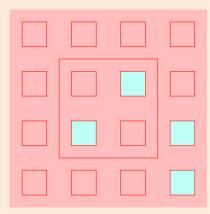
There exists a class of two-dimensional finite range potentials, inducing uniform models both stable and chaotic.

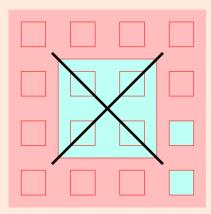
More precisely, we can realise any connected Π_2 -computable compact set X as $\mathcal{G}_{\sigma}(\infty)$, up to a fixed computable affine homeomorphism.

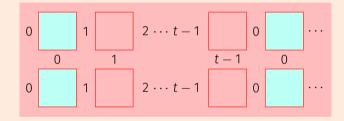
Corollary

The question of whether a computable φ induces a chaotic model is Σ_3 -complete.



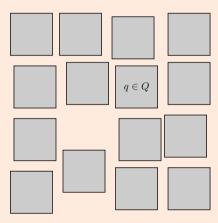


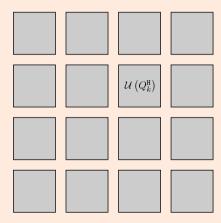




Gallery

. aja ata 0 0 0 0 0 0 nin atalaja ata





Bibliography

- Barbieri, Sebastián et al. (2022). Chaos in Bidimensional Models with Short-Range. 10.48550/arXiv.2208.10346.
- Brémont, Julien (2003). "Gibbs Measures at Temperature Zero". In: Nonlinearity 16.2, pp. 419–426. 10.1088/0951-7715/16/2/303.
- Chazottes, Jean-René and Michael Hochman (2010). "On the Zero-Temperature Limit of Gibbs States". In: Communications in Mathematical Physics 297.1, pp. 265–281.
 10.1007/s00220-010-0997-8.
- Chazottes, Jean-René and Mao Shinoda (2020). On the Absence of Zero-Temperature Limit of Equilibrium States for Finite-Range Interactions on the Lattice Z². 10.48550/arXiv.2010.08998.
- Durand, Bruno, Andrei Romashchenko, and Alexander Shen (2012). "Fixed-point tile sets and their applications". In: Journal of Computer and System Sciences 78.3, pp. 731–764. 10.1016/j.jcss.2011.11.001.
- Miękisz, Jacek (1997). "Stable Quasicrystalline Ground States". In: Journal of Statistical Physics 88.3–4, pp. 691–711. 10.1023/B: JOSS.0000015168.25151.22.

THE END OF PRESENTATION **ONE MORE SLIDE:**

Thank you.