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Undergoing of the Internship
I spent all my internship on the north campus of the Kyoto Graduate School of
Science, in Japan. During these three months, the initial task given to me was
to hold a weekly seminar, along the lines of a groupe de lecture. The first articles
I presented are the reason I contacted Kouji Yano in the first place:

• [1] Realization of an ergodic Markov chain as a random walk subject to a
synchronizing road coloring;

• [2] Random walk in a finite directed graph subject to a road coloring; and

• [3] Random walk in a finite directed graph subject to a synchronizing road
coloring.

These three papers are quite complementary so I reordered their results in a way
which felt more natural to me, focusing mostly on [2]. This problem roughly
occupied the first third of my internship, and is summed up in the first section
of the following report, as the starting point for a potential generalisation.

After this, Yano-sensei recommended me some more articles to read, notably:

• [4] Tsirel’son’s equation in discrete time (Yor);

• [5] Chaînes de Markov indexées par −N : existence et comportement
(Brossard and Leuridan); and

• [6] On the exchange of intersection and supremum of σ-fields in filtering
theory (Handel).

While the main questions of [4], [5], [6] and Yano’s articles seem quite distinct,
all these papers rely on a likewise model: a Markov chain with infinite past
(Xi)i≤0 and its asymptotic filtration F−∞ = ⋂

n≤0 σ(Xi, i ≤ n). It is to note
that Yor’s article is one of the inspirations of [2] and [5], so these problems
are actually somehow related. For my last seminars, I roughly translated [5]
(originally written in French) in English and presented the translation along
with some lemmas of [4] it uses.

As these papers were getting too technical for my seminar, during the last
third of the internship, I went back to Yano’s articles and started working on a
possible generalisation of their results in the case of a countable set space. This
personal research will be explained in the latter parts of this report.

During my internship, I did not only held a weekly seminar but also attended
a lot of seminars presented by other students. While their content was quite out
of my league – the seminars were entirely done in Japanese and I lacked some
prerequisites – the overall experience itself has been quite interesting.

Though unrelated to the subject of the internship, I also spent some time
working on computer science as a warmup for the Agrégation de mathématiques
– as I won’t have any time to do so between the intership and the start of classes.

My thanks go to Kouji Yano and his students for welcoming me in their lab
during this experience.
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1 The Road Colouring Theorem
In this first section, we will study the random walks driven by a random colour
introduced in Kouji Yano’s articles. To contextualise the results, we will first
briefly see the original – deterministic – road colouring problem on finite graphs.
Then, we will introduce the notion of random walks driven by a random mapping,
and how it can be related to the a priori more general notion of Markov chains.
Finally, there will a more technical part, about the properties of these random
walks up to the random road colouring theorem.

1.1 The Deterministic Road Colouring Problem
The canonical road colouring problem was first stated in the late 1970s in a purely
deterministic framework. We say that a set of mappings Σ0 ⊂ Σ := {σ : V → V }
on a finite set V is synchronising if the composition semigroup generated by Σ0
contains a constant application, ie there is some word (n0, . . . , nr) ∈ Σ+

0 such that
n0 ◦ · · · ◦ sr is constant. The problem can be formulated as follows: given some
oriented graph G = (V,A) (allowing multiple edges with the same extremities), is
there some partition (σi)1≤i≤d of the edges A so that each σi naturally represents
a mapping and that the set of mappings {σi, 1 ≤ i ≤ d} is synchronising?

To understand this problem, let us consider a city map instead of an abstract
graph, with the streets being the edges. At every intersection – vertex of the
graph – each available road must be assigned a colour; globally, in order to
induce a mapping, each colour must leave each crossroad exactly once. The
colouration of the map is called synchronising if there exists some finite sequence
of instructions – of colours – so that, starting from any crossroad of the city,
following these directions will lead to the same destination. Such a sequence is
called a synchronising word.

The previous example may seem a bit forced, as nobody would get that lost.
However, such methods can be used in automata theory, where there should
ideally be no human intervention on the machine. For the automaton to properly
work, you need to reset it back to its initial state after usage. If a hard reset
is not an option, this requires some knowledge about the current state of the
machine. Thereby, if an error is detected in the data given to an automaton, it
may be quicker to directly reset the machine instead of waiting to reach a known
state – this is all the more true given that the input is erroneous and may have
an unpredictable effect on the state. Therefore, the user may want to input a
“reset key” – a synchronising word – so that the automaton goes back to its
initial stage.

It follows quickly from the definitions that a graph admits some colouration
if and only if it has a constant out-degree d. However, such colourations are not
always synchronising. In Figure 1 below, we can see the two possible colourations
of K2: the left one uses two constant mappings, and thus is clearly synchronising,
while the right one uses two permutations, and thus is clearly not. Similar
constructions can be made on any complete graph Kn.
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Figure 1: The two possible colourations of the complete graph K2

In the late 2000s, in his well-known paper [7], Trahtman proved that any
strongly-connected aperiodic graph G with constant out-degree d has a synchro-
nising colouration.

1.2 Markov Chains and Random Colours
Now that we have introduced the deterministic ideas of road colouring, we will
see how to use this model to define random-walks. As a colourable graph G can
be entirely deduced from a colouration, we will tend to forget about G itself and
focus on the colourations from now on; the former notion of colouration allows
multiple colours to be associated to the same mapping of Σ, but two such colours
play exactly the same behaviour in the transitions over V so we will merge these
together, and represent a colouration as a subset Σ0 ⊂ Σ of our set of mappings.

Because a mapping σ ∈ Σ corresponds to a deterministic transition law over
V , a random colour N of law µ naturally induces random transitions and thus
a random walk over V , and the support of its law supp(µ) is a colouration as
redefined above.

In what follows, we consider some arbitrary time interval I ⊂ Z which can
always be brought back to N or Z, depending on whether I has a minimum
element (the walk has a starting point or an initial law) or not (the walk has an
infinite past). The following definition is equivalent to the one on p. 261 in [2]:

Definition 1 (µ-Random Walk). Consider some probability law µ ∈ P (Σ)
over the mappings on the (finite) set V . A random process (Xn, Nn)n∈I is
called a µ-random walk if:

1. Xn are random variables over V ;

2. Nn
iid∼ µ are independent random colours of common law µ;

3. the transitions in X are driven by N following Xn+1 = Nn+1Xn; and

4. the transitions are independent of the past, so Nn |= σ(Xi, Ni, i < n).

If a = inf I > −∞, then the law of Xa is called the initial law of the
µ-random walk.

Lemma 1 (Induced Markov Chain). Consider a random colour law µ. Any
mapping σ can be seen as the stochastic matrix σ(y, x) = δσx,y. We can define
the transition matrix P := ∑

σ∈Σ
µ(σ)× σ induced by µ.

If (Xn, Nn)n∈I is a µ-random walk, then (Xn)n∈I is a P -Markov chain.
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The converse property is true, though a bit less forward to formulate. I give
here my own construction of a law µ, which differs from the one stated on p. 772
in [1]. While their construction is somewhat minimal, my version has a maximal
support and a briefer and more explicit construction, which will appear again in
the last section.

Lemma 2 (Induced µ-Random Walk). Consider (Xn)n∈I a P -Markov chain,
so that P(Xn+1 = y|Xn = x) = P (y, x). We define the random colour law µ
by µ(σ) := ∏

x∈V P (σx, x).
The chain X can be represented as a µ-random walk (Y,N), so that the

processes X d= Y have the same law. The idea behind the process (Y,N) is to
choose independently a successor for each point in V according to P , and only
then to look at the value of Y to apply the right transition.

What’s more, this law µ has a maximal support: for any random colour µ
inducing the kernel P , necessarily µ(σ) ≤ P (σx, x) so µ(σ) ≥ µ(σ)|V |. Thus
the maximality of the support, supp(µ) ⊂ supp(µ).

Note that, just like a graph G can have several colourations, a transition law
P can be induced by several laws µ. For example, in Figure 1, a uniform choice
between red and blue induces a Chain (Xn)n∈I iid∼ U({L,R}) in both cases, which
in turn induces the random colour law µ = U(Σ). Now, by inclusion of the
supports, a transition law P can be induced by some random colour law µ with
synchronising support if and only if the law µ induced by P has a synchronising
support itself.

1.3 The Random Road Colouring Theorem
In all this subsection, we consider a random colour µ that induces a strongly-
connected aperiodic graph G, so that the results of Trahtman [7] hold and, by
Perron-Frobenius theorem, the induced transition law P has a unique invariant
law λ.

We also assume from now on that the time interval is Z (or eventually −N),
the important point being that inf I = −∞, so that each variable Xn has an
infinite past and displays an asymptotic behaviour.

The proof of the lemma below can be found on p. 268 in [2]. As it does not
make use of any specificity of the finite case, the results of the lemma are still
true in the countable case, and they may be used in the following sections.

Lemma 3 (Uniqueness of the µ-Random Walk). Under the previous hypothe-
ses, there exists a unique µ-random walk, up to identity in law.

By uniqueness, the process is necessarily stationary and the common law of
(Xn)n∈Z is the P -invariant law λ.

While the uniqueness is a mere consequence of Perron-Frobenius theorem, the
existence part of the lemma uses Kolmogorov extension theorem, which basically
states that if a family of laws does not hold any internal contradiction then it
can be represented by a family of random variables on a probability space. More
details on this fundamental result can be found in these online notes [8].
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Definition 2 (Strong µ-Random Walk). A µ-random walk (Xn, Nn)n∈Z is
called strong if, for any n ∈ Z, we have Xn ∈ σ(Nj , j ≤ n); in other words,
there is a function fn : ΣN → V so that Xn = fn(Nn, Nn−1 . . . ).

The random road colouring problem is, in a general framework, the research
of implications or equivalences between the strongness and other properties of
µ. In particular, in the finite case and under this subsection’s hypotheses, Kouji
Yano proved the following theorem which is stated on p. 262 in [2]:

Theorem 1 (Random Road Colouring Theorem). Under the previous hypothe-
ses, for any µ-random walk (X,N), the following affirmations are equivalent:

1. supp(µ) is synchronising;

2. ∀n ∈ Z, (Nn ◦Nn−1 ◦ · · · ◦Nn−k)k≥0 almost surely converges in Σ when
k →∞;

3. (X,N) is strong.

The forward implications are quite forward actually. (1 ⇒ 2) is a mere
consequence of the second Borel-Cantelli lemma: we are certain to encounter a
synchronising sequence of colours in finite time and everything happening before
has no effect. (2 ⇒ 3) is a bit trickier out of the blue, but with the uniqueness
in Lemma 3 in mind, it is enough to remark that the process (Y,N) is strong,
where Yn := limNn ◦Nn−1 ◦ · · · ◦Nn−k(x0) (for some chosen x0) is almost surely
well defined.

However, the last implication (3 ⇒ 1) (its contrapositive, actually) is much
harder to demonstrate: the whole proof takes a dozen of pages, so only the main
ideas will be introduced in Appendix A. The whole proof can be found in [2],
mostly in section 4.

2 Generalisation to the Countable Case
In this second section, my objective is to see how the previously studied road
colouring problem may be generalised. In order to do so, we will first briefly
introduce the general framework for Markov chains (on uncountable spaces).
Then, we will see how the random colours can relate to the notion of coupling.
Finally, we will introduce a notion of synchronising behaviour for couplings and
see how it compares to the previously introduced synchronising behaviours for
µ-random walks.

2.1 Generalised Markov Chains
Nowadays, the typical space of a Markov chain is not a finite nor countable set,
but a Polish space E. This new framework allows us to study Brownian motions
and Lévy processes on Rd for example.
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Definition 3 (Polish Space). A topological space (E, T ) is said Polish when:

• the space E is separable; and

• the topology T is induced by some complete metric d over E.

Note that when a space E has the discrete topology (induced by the complete
metric d(x, y) = 1−δx,y), it is separable (thus Polish) if and only if it is countable;
thus the notions of countable set and discrete topology are equivalent for Polish
spaces. Note also that a countable space (E, T ) is Polish if and only if T is the
discrete topology.

The next step is to generalise the notion of transition law. In the discrete
case, transition laws over E are exactly families of probability laws in P(E)
indexed on E. However, in the more general case, we have to assume some more
structure on the Markov kernel Π:

Definition 4 (Markov Kernel). A Markov kernel Π (over E), which we will
simply call a kernel, is an application Π : E × B(E)→ R+ such that:

• for any state x ∈ E, Πx ∈ P(E) is a probability law over E; and

• for any measurable A ∈ B(E), the application x 7→ Πx(A) is measurable.

When the following integral is defined, we denote Πx(f) :=
∫
E f(y)dΠx(y).

We can also define the product of kernels as follows:

∀A ∈ B(E) ,
(
Π(2)Π(1)

)
x

(A) =
∫
E

Π(2)
y (A)dΠ(1)

x (y) .

To put it bluntly, the previous assumptions on the space E are the bare
minimum so that the Kolmogorov extension theorem can always guarantee the
existence of a Π-Markov chain (Xn), defined as follows:

Definition 5 (Π-Markov Chain). A random process (Xn)n∈N is called a Π-
Markov chain if for any n ∈ N and any measurable f : E → R+ we have

E[f(Xn+1)|X0, . . . , Xn] = ΠXn(f) . (1)

If E is a countable space, the notions of kernel Π and transition law P are
equivalent with the equality P (y, x) = Πx({y}), as these two notions induce the
same random processes X.

These definitions are everything we need to state problems for general Markov
chains. Much more details on this general case can be found in [9] Markov chains
and stochastic stability, which I found more accessible for newcomers than the
much more technical classic [10] Markov chains (Revuz).

Definition 6 (Coupling of Kernels). Let Π be a kernel over E. A coupling
of Π is a kernel Q over E × E so that the marginal transition laws always
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correspond to Π:

∀(x, y) ∈ E2 , Qx,y(• × E) = Πx(•) and Qx,y(E × •) = Πy(•) . (2)

Remark 1 (Underlying Idea Behind Coupling). The general idea behind a
coupling is to assume that if you consider two Markov chains on E happening
simultaneously, the way they will interact and influence each other can be
predicted as well.

It is quite clear that if (X, Y ) is a Q-Markov chain, then X and Y are
Π-Markov chains. Two identical (X = Y ) or independent processes (X |= Y )
naturally induce a coupled kernel. However, given two Π-Markov chains X
and Y , the couple (X, Y ) is not necessarily a time-homogeneous Markov chain
itself, and thus does not necessarily induce a coupled kernel.

For example, consider (ξi)i>0
iid∼ U({0, 1}), Xn = X0 + ∑n

i=1 ξi mod 2 and
Yn = Y0 + ∑n

i=1 ξi + bn2 c mod 2. At even times (2k → 2k + 1 transitions), X
and Y take opposite decisions, only one of them moves, while at odd times, X
and Y make the same choice of moving or not. If we look back on Figure 1, it
would mean to alternate between the left and the right colourations, choosing
one of the two available colours uniformly at each step. Such a process cannot
be represented by a time-homogeneous Q-Markov chain.

2.2 Couplings and Random Colours
In this subsection, we will go back to the finite case. We have seen that any
Markov chain can be represented as a µ-random walk, and that a law µ induces
one (and only one) kernel Π.

Definition 7 (Coupling Induced by a Random Colour). Let µ be a law over
colours and Π the kernel on E induced by µ. A coupling Q of Π is said to be
induced by µ if

Qx,y(u, v) = µ ({σ ∈ Σ , σx = u and σy = v}) . (3)

Note that, if (Xn) and (Yn) are two µ-random walks – defined on the same
probability space – sharing the same random colours (Nn), then (X, Y ) is a
coupled Q-Markov chain.

However, the converse property is not obvious. In fact, is false in general that
a coupling can be induced by some random colour. A quick look at a coupling
Q induced by µ shows that it must at the very least be sticky and symmetrical,
two notions I naturally came to introduce while studying this problem.

Definition 8 (Sticky Coupling). A coupling Q of Π is called sticky if for any
initial state x ∈ E, starting from the couple (x, x), we have the following
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transition law:
Qx,x(u, v) =

{
Πx(u) if u = v ,
0 if u 6= v .

In the general situation of a Polish space, the previous relation may be
generalised as Qx,x(A×B) = Πx(A ∩B).

Definition 9 (Symmetrical Coupling). A couplingQ of Π is called symmetrical
if for any initial pair (x, y) ∈ E2, we have Qx,y(u, v) = Qy,x(v, u).

In the general situation of a Polish space, the previous relation may be
generalised as Qx,y(A×B) = Qy,x(B × A).

I conjectured at first that this necessary condition was also sufficient, ie any
symmetrical sticky coupling could be induced by a random colour. However,
while studying this subject, I noticed that the main obstruction to this result
was the existence of a colour compatible with the coupling, and figured that such
an obstruction should arise as soon as |E| > 2, which gave birth to the following
counterexample:

Example 1 (Coupling Incompatible With Mappings). Consider the fully uni-
form process on 3 elements: (Xn)n∈N iid∼ U(F3). This process is a Π-Markov
chain where, for any i, j ∈ F3, we have Πi(j) := 1

3 .
We want to define a symmetrical sticky coupling, thus we only need to set

the coupled laws for the initial pairs (1, 2), (1, 3) and (2, 3). We define the
coupling as follows, with the each row being a choice of x and each column a
choice of y in Qi,j(x, y).

Q1,2 1 2 3
1 0 1/3 0
2 1/3 0 0
3 0 0 1/3

Q1,3 1 2 3
1 0 0 1/3
2 0 1/3 0
3 1/3 0 0

Q2,3 1 2 3
1 0 0 1/3
2 1/3 0 0
3 0 1/3 0

Figure 2: Definition of the Sticky Symmetrical Coupling Q

The interest of this representation of the coupling Q is that the sum over
a row x (respectively a column y) in Qi,j must be equal to Πi(x) (resp. Πj(y))
– hence a much more readable table than a “linear” enumeration of Qi,j over
the couples in F3 × F3.

The main tip behind this coupling is to maximize the number of impossible
transitions, in order to force any value of a hypothetical random colour to have
null probability, thus an absurdity. In order to do so, the most direct way was
to have exactly one positive value on each column and each row, which in turn
imposed the choice of the uniform kernel Π.
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The problem is now a purely combinatorial one. We know that in all
generality, if Q is generated by a random colour law µ, then for any (x, y) ∈ E2

we have µ(σ) ≤ Qx,y(σx, σy).

σ(1, 2, 3) Qx,y(σx, σy) = 0
(1, 1, ∗) Q1,2(1, 1)
(1, 2, 1) Q1,3(1, 1)
(1, 2, 2) Q1,3(1, 2)
(1, 2, 3) Q2,3(2, 3)
(1, 3, ∗) Q1,2(1, 3)
(2, 1, 1) Q1,3(2, 1)
(2, 1, 2) Q2,3(1, 2)
(2, 1, 3) Q1,3(2, 3)

σ(1, 2, 3) Qx,y(σx, σy) = 0
(2, 2, ∗) Q1,2(2, 2)
(2, 3, ∗) Q1,2(2, 3)
(3, 1, ∗) Q1,2(3, 1)
(3, 2, ∗) Q1,2(3, 2)
(3, 3, 1) Q2,3(3, 1)
(3, 3, 2) Q1,3(3, 2)
(3, 3, 3) Q1,3(3, 3)

Figure 3: Incompatibilities Between Q and the σ ∈ Σ

Now, this figure quickly shows that for any mapping σ : E → E, there is
(at least) one coupled transition with null probability in Q. Thus, the coupling
Q is entirely incompatible with any random colour µ.
Even in a simple finite case, the notion of (symmetrical sticky) coupling is a

strict generalisation of the one of random colours. A problem stated on couplings
will therefore be a priori more general than its counterpart on colours, though
they may be equivalent, as the existence of a coupling satisfying some property
may be equivalent to the existence of such a coupling induced by a random
colour.

One could wonder why we should study couplings instead of random map-
pings. One of the reasons is that the set of mappings on E has the cardinality
2|E|. This means in particular that we lose the main interest of the countable
case by introducing a continuous law. Therefore, in what follows, we assume
that a random colour law µ must have a countable support.

2.3 Successful Couplings and a Generalised Road Colour-
ing Theorem

We will now introduce the notion of successful coupling, a kind of synchronising
behaviour for couplings, and then compare it to the notion of strong µ-random
walk.

Definition 10 (Successful Coupling). Let E be a countable Polish space. A
coupling Q is successful if for any (x, y) ∈ E2, the Π-Markov chain (X, Y ) has
the following property:

Px,y(∃n0 , ∀n ≥ n0 , Xn = Yn) = 1 . (4)

In the general case of a Polish space (E, d), the notion of successful coupling
is too demanding, and quite unrealistic as the diagonal {(x, x), x ∈ E} ⊂ E ×E
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typically has a null measure. Thus, in the uncountable case, one may introduce
a property like Px,y(d(Xn, Yn)→ 0) = 1 instead.

Lemma 4 (Stickiness of a Successful Coupling). Consider some coupling Q,
which is not necessarily sticky. We define the induced sticky coupling Q by

Qx,y(u, v) =


Qx,y(u, v) if x 6= y ,
Πx(u) if x = y and u = v ,
0 if x = y and u 6= v .

If Q is successful, then so is Q.

It follows from this lemma that when studying synchronising behaviours, we
can restrict ourselves to sticky couplings without loss of generality. However,
while we will mostly consider symmetrical couplings, it is still unclear to me now
whether the existence of a successful coupling is equivalent to the existence of
its symmetrical counterpart or not, so these considerations will be left open for
now.

Remark 2 (Exact Sampling as an Application of Couplings). While the model
of µ-random walks is quite recent and the results on it are sparce, the notion
of successful couplings has been studied since the 1970s and is useful to add a
notion of correlation into statistical models. One of the most known application
of Markov chains coupling is exact sampling.

When an irreducible kernel is positive-recurrent, you can start from any
point and let the walk run long enough to reach a probability distribution close
to the invariant law. However, in such situations, the probability distribution
is only an approximation of your invariant law and you do not always have a
good control over the rate of convergence.

In some situations, using for example monotonicity properties of your tran-
sitions, you can find some successful coupling so that the probability of meeting
on a given point is equal to the invariant law: this method is called exact sam-
pling. More details and examples of applications can be found in [11].

Note that in the case of a colour law µ with synchronising support, you
can similarly generate a random sequence of mappings according to µ and stop
when you observe a synchronising word: the image of the obtained constant
application follows the desired law.

We have introduced the basics of our notion of synchronising behaviour for
couplings. Until the end of this section, we will see how this notion compares to
the notion of strong µ-random walk.

Lemma 5 (Equivalence Between the Notions of Synchronisation in the Finite
Case). We are here in the finite case, with E = J1, nK. Consider some random
colour law µ and Q the induced coupling. Then supp(µ) is synchronising if and
only if the induced coupling Q is successful.

Proof.
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We have already seen that when the coupling Q is induced by a law µ, we can
represent a Q-Markov chain (X, Y ) as two µ-random walks (X,N) and (Y,N)
driven by the same random mappings N . As a synchronising word appears in
the random sequence N with probability 1, for any initial couple (x, y) ∈ E we
have Px,y(∃n , Xn = Yn) = 1, and by stickiness the coupling is thus successful.

The converse implication is a bit more convoluted, as it only gives pairwise
synchronising sequences. In other words, because Q is successful, then for
any starting couple (x, y), there is (at least) one word in supp(µ)+ so that
〈s〉x = 〈s〉 y. Consider s2 so that 〈s2〉 1 = 〈s2〉 2. By induction, we pick si+1
so that 〈si+1 . . . s2〉 i = 〈si+1 . . . s2〉 (i + 1). Then, t = sn . . . s2 ∈ supp(µ)+ is
synchronising word for E, thus supp(µ) is synchronising.

We previously remarked that if some µ has synchronising support, then by
maximality the law µ we built also has synchronising support. Now, note that in
the previous proof, each letter of the word t is a possible transition on the graph
of Π, so it is in supp(µ); in fact, even when Q is not induced by a random colour
µ, we can similarly build such a word t with letters in supp(µ). Therefore, the
existence of a synchronising colouration and a successful coupling are equivalent
in the finite case.

In the countable case, things get a bit more tedious. While the notions of suc-
cessful coupling and of strong µ-random walk can be unambiguously generalised,
how they relate to each other becomes quite uncertain. I proved the following
result:

Theorem 2 (Generalisation of the Road Colouring Theorem). Let E be a
countable space and µ a random colour law, ie a discrete probability measure
(with countable support) over {σ : E → E}, inducing an aperiodic irreducible
positive recurrent kernel Π, and a coupling Q. Consider the following proper-
ties:

1. Q is successful;

2. any finite E0 ⊂ E has a synchronising word s ∈ supp(µ)+ such that
|〈s〉E0| = 1; and

3. the µ-random walk (X,N) (unique up to identity in law) is strong.

We have the direct implications (1⇒ 2) and (2⇒ 3).

Proof.
The implication (1⇒ 2) comes from a direct induction: becauseQ is successful,
for any initial couple (x, y), the coupled process (X, Y ) which can be seen as
two µ-random walk with the same transitions N is merged with probability
1. Thus, there is a synchronising word s for the pair {x, y}. Then, we can
find t so that t synchronises {〈s〉x, 〈s〉 z}. Thus, ts synchronises {x, y, z}. By
iterating this process, we obtain synchronising words for any finite subset of
E.

12



This second property can be seen as the generalisation of a synchronising
support supp(µ) from the finite to the countable case. However, unlike the
finite case, we cannot simply wait a (random) finite amount of time for N to
merge E into one point.

Let us show (2 ⇒ 3) now. Consider the stationary µ-random walk
(Xn, Nn)n∈Z and λ the common law of X. We define an enumeration (xn)n∈N
of E and Ei = {xn , n ≤ i}. Clearly (λ(Ei))i∈N is strictly increasing to 1.

Now, for a given i ∈ N, Ei has a synchronising word si. We define the stop-
ping time τi so that si is a suffix of (N0, . . . , Nτi), without any other occurrence
(by Borel-Cantelli lemma, this random time is well-defined in −N).

We denote σi = N0 ◦ · · · ◦Nτi . We have X0 = σi(Xτi−1). Because the event
{ω ∈ Ω , τi(ω) = k} is measurable in σ(Nj , j ≥ k), by making a disjunction
over the values of τi, one can easily prove the independence of the variables
σi |= Xτi−1 and that Xτi−1

d= λ. Now we define Yi := σi(x0) ∈ σ(Nn , n ≤ 0).

P(X0 6= Yi) = P(X0 6= σi(0) , Xτi−1 ∈ Ei) + P(X0 6= Yi , Xτi−1 ∈ Ec
i )

≤ P(X0 6= σi(Xτi−1) , Xτi−1 ∈ Ei) + P(Xτi−1 ∈ Ec
i )

≤ P(X0 6= σi(Xτi−1)) + λ(Ec
i )

≤ 0 + o
i→∞

(1)

Because of this, we have the convergence in probability Yi P−→ X0. Up to
some extraction φ, we have consequently Yφi a.s.−→ X0, hence X0 = lim Yφi is
measurable in σ(Nn , n ≤ 0), and the µ-random walk (X,N) is strong.

Remark 3 (Extraction of a Convergent Sequence). In the previous theorem,
we used the fact that if Yn P−→ X0, then there exists a subsequence of (Yn)n∈N
almost-surely converging toX0, which is generally true on Polish spaces (see for
example lemma 3.2 p. 40 in [12] Foundations of modern probability). However,
this gives us no information at all on which subsequence is actually converging.

Assume that ∑i∈N λ(Ec
i ) = ∑

i∈N i× λ(xi) < ∞. Then, by the first Borel-
Cantelli lemma, only a finite number of events {ω , Xτi−1 /∈ Ei} will be realised,
thus a random index J(ω) such that P(∀i ≥ J , Xτi−1 ∈ Ei) = 1, which implies
in turn that P(∀i ≥ J , X0 = Yi) = 1. In other words, the sequence Y is almost
surely stationary, thus Yi a.s.−→ X0. More generally, if your extraction φ is such
that ∑i∈N λ(Ec

φi) <∞, then Yφi a.s.−→ X0.
This result can also be adapted to any sequence of finite subsets (Ẽi)i∈N

such that (λ(Ẽi))i∈N is strictly increasing to one.

We have seen that the synchronising behaviour of the coupling Q implies
the synchronising behaviour of the support supp(µ), which in turn implies the
strongness of the µ-random walk in the positive-recurrent case. This justifies
that in order to study µ-random walks, a good comprehension of couplings may
be helpful.

13



2.4 Sufficient Condition on Random Colours for
Successful Couplings

We will begin with an example of random colour on a countable set, to illustrate
the results of the previous subsection:

Example 2 (Example of Successful Coupling). Consider the case E = Z. We
define three mappings f , g and h on the figure below.

x < 0 x = 0 x > 0
f x+ 1 x x− 1
g x− 1 x+ 1 x+ 1
h x− 1 x− 1 x+ 1

Figure 4: Support of the Random Colour Law

Let 0 < p < q < 1 , p+q = 1 and define the colour law µ = qδf + p
2(δg+δh).

The Markov kernel Π induced by µ is irreducible, positive-recurrent (because
p < q) and aperiodic (because f(0) = 0 and µ(f) > 0), thus the generalised
road colouring theorem holds. Because f i(J−i, iK) = {0}, the property (2) of
the theorem is true and therefore the µ-random walk is strong.

Consider the invariant law λ such that λ = Πλ. When x > 1, this means
λ(x) = λ(x + 1)Πx+1(x) + λ(x − 1)Πx−1(x) = qλ(x + 1) + pλ(x − 1). Now,
as qX2 −X + p = (X − 1)(qX − p), the roots of the polynomial are 1 and p

q
.

On the right side, for n ≥ 1, we have the behaviour λ(n) = a× 1 + b×
(
p
q

)n
.

As the total mass of N must be finite, we have a = 0. Now, because Π has
a symmetrical effect on ±N, for n 6= 0 we have λ(n) = λ(0)

2 ×
(
p
q

)|n|
. Finally,

λ(0) = q−p
q
.

If we consider the sets Ẽi = J−i, iK,

∞∑
i=0

λ(Ẽc
i ) = λ(0)× p

q
×
∞∑
i=0

i

(
p

q

)i−1

= p

q − p
<∞ , (5)

thus the previous remark holds.
Therefore, we do not only have the implication (2 ⇒ 3) here, but also

obtain naturally an almost sure convergence without any intricate extraction.
Now, if the conjecture (3⇒ 1) is true, the coupling Q induced by µ should be
successful. That’s what we will demonstrate now.

To prove it, we consider a coupled process (Xn, Yn)n∈N with the initial
state (x, y) ∈ Z2. We introduce the random distance dn = |Xn − Yn| which
is adapted to the filtration Fn = σ(Xi , Yi , 0 ≤ i ≤ n). By studying each
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possible configuration of the starting couple (x, y), we obtain

E[dn+1|Fn] = E[dn+1|Xn, Yn] ,
E[dn+1|Fn] ≤ dn − (q − p)χ(Xn 6= Yn)χ(Xn ≤ 0 ≤ Yn or Xn ≥ 0 ≥ Yn) ,
E[dn+1|Fn] ≤ dn ,

hence (dn)n∈N is a supermartingale.
Now, by recurrence of the kernel Π, the stopping times τ−1 = −1 and

τi+1 = inf{t > τi , Xt = 0} are such that, for any i ∈ N, Xτi = 0 almost surely,
and {ω , τi = k} ∈ Fk.

This implies that E[dτi+1] ≤ E[dτi ] − (q − p)P(Yτi 6= 0). Because (dn) is a
supermartingale, by induction, 0 ≤ E[dτi ] ≤ d0−(q−p)×∑j∈J0,i−1KP(Yτj 6= 0).
Therefore, for any i ∈ N, we have

0 ≤ (q − p)×
i−1∑
j=0
P(Yτj 6= 0) ≤ d0 , (6)

and thus ∑j∈NP(Yτj 6= 0) ≤ d0
q−p <∞.

By the first Borel-Cantelli lemma, only a finite amount of such events hap-
pens simultaneously, thus some random index J such that P(YτJ = 0) = 1.
This implies in particular that, if we denote T = τJ , then Px,y(XT = YT ) = 1
and so Q is a successful coupling.
This example shows that the study of couplings is not necessarily easier than

the study of random colours, depending on the situation. The reasoning in this
example can be generalised as a sufficient condition on µ for Q to be success-
ful:

Proposition 1 (Sufficient Condition on µ for a Successful Coupling). Let
(E, dE) be a countable Polish space and µ a random colour law like in Theorem
2 above. We define the following properties:

1. ∀x, y ∈ E , Ex,y[dE(X1, Y1)] =
∫
Σ
dE(σx, σy)dµ(σ) ≤ dE(x, y) ,

2. ∃x0 ∈ E , inf
y 6=x0

(dE(x0, y)− Ex0,y[dE(X1, Y1)]) = θ > 0 .

If these properties on µ are true, then the induced coupling Q is successful.

Proof.
Because of the first property, dn = dE(Xn, Yn) is a supermartingale for the
filtration Fn like in the previous example. If we replace 0 by x0 (given by
the second property) in the example, we can still define the stopping times τi;
now, if we replace (q − p) by θ in the calculations, we obtain a proof of this
proposition.

Note that we do not use the positive-recurrence of the kernel in this result
but only its recurrence, so this sufficient condition may be used in a recurrent
framework, where µ-random walks with infinite past do not necessarily exist.
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The next logical step would be to prove the remaining implication (3 ⇒ 1);
considering how long the proof is in the finite case, this is out of reach for now,
assuming that (3 ⇒ 1) holds. This implication would also give us (2 ⇒ 1),
ie one would only need to study the support of the law µ to conclude on the
(non-)successful nature of the coupling Q, which is quite convenient. However,
considering how long the proof is in the finite case, this seems beyond my current
abilities, and will stay an open conjecture for now.

3 Successful Couplings for Countable
Irreducible Kernels

In this last section, we will see some simple examples of couplings to get a better
idea of how successful behaviours emerge in the countable case. A study of
the general case of non-irreducible kernels allows dynamics too convoluted to be
studied, so we will only see some typical behaviours of an irreducible kernel.

3.1 Successful Coupling for Positive-Recurrent Kernels
The following theorem echoes in fact the construction of µ in the first section.
In both situations, the basic idea is to consider independently a successor for
each starting point. As a coupling Q considers only two starting points x and
y (eventually equal to each other), this idea works pretty well. However, the
probability law µ has to consider a successor for each element of E: supp(µ) is
countable if and only if there is only a finite amount of states with more than one
successor, exhibiting a non-deterministic transition under the kernel Π, which is
quite a demanding.

Theorem 3. We define the independent sticky coupling Q induced by Π by

Qx,y(u, v) =


Πx(u)× Πy(v) if x 6= y ,
Πx(u) if x = y and u = v ,
0 if x = y and u 6= v .

Now, if the transition kernel Π is irreducible positive-recurrent, then the
independent sticky coupling Q is successful.

Proof.
Consider some starting couple (x, y), and two independent Π-Markov chains
X and Z starting on x and y. We introduce the (eventually infinite) sticking
time T = inf{n ∈ N , Xn = Zn} ∈ N and define the process Y by

Yn :=
{
Zn if T ≥ n ,
Xn if T ≤ n .

Clearly, (X, Y ) is the (unique up to identity in law)Q-Markov chain starting
on (x, y). What’s more, P(∃n , Xn = Yn) = P(T <∞).
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Now, thanks to Proposition 3 in Appendix B, the process (X,Z) is recur-
rent, which implies P(T <∞) = 1, thus Q is a successful coupling.

We have seen that the independent sticky coupling can always be induced
by the probability law µ induced by Π, but this probability law does not have a
countable support in most of the cases. However, it is still possible to obtain a
satisfying random colour, like in the last example of the previous section which
used three colours only.

While the positive-recurrence of the kernel Π can be useful, it is not a require-
ment to have a successful coupling Q, as we will see in the next examples. How-
ever, without this assumption, we cannot guarantee the existence nor uniqueness
of a µ-random walks with an infinite past; thus, while µ-random walks indexed
on N may be studied in the following frameworks, the notion of strong process
with an infinite past is not really adapted anymore.

3.2 Random Colour in a Drifting Transient Case
In the transient case, things get worse for random colours and successful cou-
plings. We will now see an example of kernel which can be easily represented by
a random colour law (with finite support) but which cannot be associated to any
successful coupling. This example is the well-know unbalanced random walk on
Z:

Example 3 (Mirrored Random Walk on Z Drifting to ±∞). Consider p, q, r >
0 such that p+ q + r = 1. The Figure 5 clearly represents a transition law.

k < 0 k + 1k − 1 −1 0 1 l − 1 l > 0 l + 1

r

qp

p+ q

r
2

r
2

r

pq

Figure 5: Symmetrical Transition Law

With the assumption q > p, we would obtain a positive-recurrent kernel,
similar to the one in Example 2. Now we consider the case p > q, so that the
kernel Π is transient instead of positive-recurrent. Note that the choice of Π0,
or even of a finite amount of transitions, is not important, as what matters is
the asymptotic behaviour in ±∞.

Consider some coupling Q, a state x > 0 and (X, Y ) the Q-Markov chain
starting on the initial couple (x,−x). Because both X and Y values cannot
increase or decrease of more than one at each step, to have Xj = Yj at some
time j, we must have Xi = 0 or Yi = 0 at some prior time i ≤ j. Hence, by
symmetry of the transition laws:

P(∃n , Xn = Yn) ≤ P(∃n , Xn = 0 and Yn = 0) ,
≤ 2× Px(∃n , Xn = 0) .
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Now, by transience of the transition law in Figure 5 we have the convergence
Px(∃n , Xn = 0) −→

x→∞
0. Thus there is some big enough x so that, for any

coupling Q, we have Px,−x(∃n , Xn = Yn) < 1. Therefore, this mirrored kernel
Π has no successful coupling.

k < 0 k + 1k − 1 −1 0 1 l − 1 l > 0 l + 1

r
2

r
2

qp

p

q

r
2

r
2

r
2

r
2

pq

Figure 6: 4-Colouration of the Transition Law

Even in such a transient situation, we can define a random colour µ as in
Figure 6, with a finite support which is minimal most of the time; it is however
meaningless to study a µ-random walk with infinite past here.
The main issue in order to obtain a successful coupling here is that the model

has two “limbs” (Z+ and Z−) drifting in two clearly incompatible directions.
However, if your system drifts in one direction only, there is still hope. For
example, in the case of a random walk on (Z,+) driven by transitions of law
(pδ−1 + qδ1) ∈ P(Z) (0 < p < q , p + q = 1), the independent sticky coupling
is successful, because the distance between the two processes can be seen as a
recurrent Markov chain; however, as already said, such a coupling doesn’t induce
a probability law on Σ with countable support.

3.3 Multidimensional Decomposition of a Coupling
The last scenario we will illustrate in this report is the case where a walk is
transient but does not exhibit a drifting behaviour; instead, it wanders around
in a space too arborescent for recurrence to appear. Note that this wandering
behaviour is not incompatible with drifting in the general case, like in the uniform
walk on the free group with two generators.

Example 4 (Successful Coupling on Z3). It is known that the usual isotropic
random walk on Z3 is transient. However, the projection on each axis has a
recurrent behaviour. Thus, instead of a mere independent sticky coupling, we
consider the symmetrical sticky coupling which chooses the same coordinate
for both walks and then behaves like the independent sticky coupling over Z
– which we already studied – on this coordinate.

For example, consider some vectors ~x and ~y so that x1 6= y1 but x2 = y2
and x3 = y3. The coupling Q~x,~y is, under these assumptions, equal to the figure
below.
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Q~x,~y ~y + e1 ~x− e1 ~x+ e2 ~x− e2 ~x+ e3 ~x− e3
~x+ e1 1/12 1/12 0 0 0 0
~x− e1 1/12 1/12 0 0 0 0
~x+ e2 0 0 1/6 0 0 0
~x− e2 0 0 0 1/6 0 0
~x+ e3 0 0 0 0 1/6 0
~x− e3 0 0 0 0 0 1/6

Figure 7: Coupling Q When x1 6= y1 , x̂1 = ŷ1

With this coupling Q, it is quite clear that if
(
~X0 − ~Y0

)
∈ (2Z)3, then

P
(
∃n , ~Xn = ~Yn

)
= 1.

The key idea of this example is to remark that while we are following a
random walk on Z3 = Z1 × Z2 × Z3, at each step we only really perform a
random walk on one of the Zi. Thus, more generally, it may be good to seek a
good multidimensional decomposition of your initial space to use the following
theorem:

Theorem 4 (Multidimensional Coupling). Consider some countable space E
and a kernel Π : E → P(E) which admits a multidimensional decomposition:
there is a law λ ∈ P(J1, rK) and kernels Π(i) : Ei → P(Ei) such that E =
E1 × · · · × Er and Π~x(~y) =

r∑
j=1

δx̂j ,ŷj × λ(j)× Π(j)
xj

(yj).
In other words, we first choose a coordinate i according to the law λ and

then apply a transition driven by the kernel Π(i) on this coordinate of ~x.
If each Π(i) has a successful coupling Q(i), then the coupling Q obtained by

choosing at random i following λ and then applying Q(i) to the i-th coordinate
is also successful. What’s more, if each Q(i) is induced by a random colour µ(i)

then Q is also induced by a colour law µ with countable support.

Note that, while the reasoning in the previous theorem can be generalised
to a countable product of spaces without struggle, the whole space E becomes
uncountable then.

This kind of multidimensional decomposition reminds me of some game the-
ory models, where each Ei represents a game and where the players play a game
at random at each turn. Up until now we mostly considered symmetrical cou-
plings; however, with this framework in mind, we could see a coupling Q as the
strategy of a second player, following the same sequence of games as the first
one, with the intent of eventually reaching the same result.

At the beginning of the second section, we wondered whether the existence of
a successful coupling is equivalent to the existence of its symmetrical counterpart
or not. This kind of methods may allow us to reach an answer. However, game
theory results are generally quite abstract and have strong hypothesis, so this
study clearly exceeds my current reach.
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A Sketch of the Proof of the Road Colouring
Theorem

While not explicitly used in the proof, the following result (p. 263 in [2]) is the
most essential of this section: all the proof does is to recreate a similar setting
starting from the hypothesis of a non-synchronising support supp(µ), which is
more general than using solely permutations:

Proposition 2 (Weakness of a Permutation Walk). Consider some random
colour law µ so that supp(µ) contains exclusively permutations over V – the
support of µ is as far from the synchronising case as possible.

As (Σ, ◦) is a semigroup, we can define the convolution of probability laws
µ(1), µ(2) ∈ P(Σ) by

µ(1) ∗ µ(2)(σ) :=
∑

f,g∈Σ , f◦g=σ
µ(1)(f)× µ(2)(g) .

With this notion in mind, we do not make any assumptions on the induced
graph G itself, but we assume that for any transition from x to y ∈ V , we have

µ∗n ({σ , σ(x) = y}) −→
n→∞

1
|V |

.

Under these assumptions, the common law of X is the uniform probabil-
ity law λ = U(V ) and at any given time n ∈ Z we have the independence
Xn |= σ(Nj, j ∈ Z), thus a clearly non-strong random walk.

For any word s = (σ1 . . . σr) ∈ supp(µ)+ we denote 〈s〉 = σ1 ◦ σ2 ◦ · · · ◦ σr the
composition of the mappings.

Now, in the general framework of the theorem, assume that supp(µ) is non-
synchronising. This assumption implies that there is some minimal cardinality
m̂ = mins∈supp(µ)+ | 〈s〉V | ≥ 2; note that in Proposition 2, we are in the maximal
case where m̂ = |V |.

The key is then to introduce some carefully chosen s so that | 〈s〉V | = m̂. For
such a word, there is some enumeration 〈s〉V = {xi , i ∈ V̂ } with V̂ = J1, m̂K.
Now, the trick is to introduce stopping times at each occurrence of s in the
random sequence N . This induces a process (X̂, N̂) where X̂ is V̂ -valued, and
by minimality of m̂, the random colours N̂ over V̂ are in fact permutations. This
induced process is in fact a non-strong µ̂-random walk as in proposition 2.

This final result is stated on p. 279 in [2] and roughly states that the weakness
of (X̂, N̂) can be propagated to (X,N):

Theorem 5 (Weakness of the Main Process). Let k ∈ Z. Consider K(k) the
random time of the most recent occurrence of s in the sequence N before time
k. Then Xk ∈ σ(X̂K(k) , Nj , j ∈ Z) has a genuine dependence on X̂K(k).

Because X̂K(k) |= σ(Nj , j ∈ Z) and X̂K(k) is a non-constant variable, we
have Xk /∈ σ(Nj , j ≤ k). Hence a µ-random walk (X,N) which is non-strong.
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B Positive-Recurrence of Independent
Couplings

The next result is well-known; as I proved it implicitly while working on Theorem
3, I will include here my proof for completeness of this report.

Proposition 3. Consider two (countable) positive-recurrent irreducible ape-
riodic kernels Π(1) over E and Π(2) over F , of invariant laws λ ∈ P(E) and
µ ∈ P(F ). Consider their independent coupling Qx,y(u, v) := Π(1)

x (u)×Π(2)
y (v).

Then Q is also a positive-recurrent aperiodic kernel, of invariant law λ⊗ µ.

Proof.
Consider a Q-Markov chain (X, Y ) starting from (x, y), or in other words X
a Π(1)-Markov chain and Y a Π(2)-Markov so that X |= Y . Clearly, λ⊗ µ is an
invariant law for Q, and the coupled chain is irreducible aperiodic, so we only
need to show that, almost surely, (X, Y ) takes the value (x, y) ∈ E × F again
at some positive time.

We will instead study the probability of never going back to this state. For
a sequence of positive integers (ni)i>0 and an initial couple (u, v) ∈ E × F we
define

φu,v(n1, n2, . . . ) := Pu,v ((Xn1 , Yn1) 6= (x, y), (Xn1+n2 , Yn1+n2) 6= (x, y), . . . ) ≤ 1 .

We have the simple majoration Px,y(∀n > 0, (Xn, Yn) 6= (x, y)) ≤
inf(ni) φx,y(n1 . . . ). Now, we can use Markov property on φ.

φi,j(n1 . . . ) = ∑
(u,v)6=(x,y)

Pi(Xn1 = u)× Pj(Yn1 = v)× φu,v(n2 . . . )

≤ ∑
(u,v)6=(x,y)

λ(u)× Pj(Yn1 = v)× φu,v(n2 . . . ) + |Pi(Xn1 = u)− λ(u)|

≤
( ∑

(u,v)∈E×F
λ(u)× µ(v)× φu,v(n2 . . . )

)
+2dTV (Xn1|X0=i, λ) + 2dTV (Yn1|Y0=j, µ)

Let ε > 0. By σ-additivity, we can find some finite subset Aε ⊂ E (resp.
Bε ⊂ F ) so that λ(Aε) ≥ 1 − ε (resp. µ(Bε) ≥ 1 − ε). By positive-recurrence
of Π(1) and Π(2) we can also find some (deterministic) time n(i, j) so that, for
any n1 bigger than n, we have dTV (Xn|X0=i, λ) ≤ ε and dTV (Yn|Y0=j, µ) ≤ ε,
hence

φi,j(n1 . . . ) ≤
 ∑

(u,v)∈Aε×Bε
λ(u)× µ(v)× φu,v(n2 . . . )

+ 6ε .

Note that λ and µ are not trivial probabilities, thus 〈λ, µ〉L2 ≤ ||λ||∞ < 1.
Finally, by replacing ε by ε

6 , we can obtain some finite set C ⊂ E × F so that,
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for any (i, j) ∈ E × F , we have some time n so that for any (ni) such that
n1 ≥ n, we have the inequality

φi,j(n1 . . . ) ≤ ||λ||∞ × sup
(i,j)∈C

φi,j(n2 . . . ) + ε ≤ ||λ||∞ + ε .

Because C is finite, we have n2 := max(i,j)∈C n(i, j) < ∞. Consider the
constant sequence s = (n2)i>0. By taking the supremum over C on the left
term above, it appears that

sup
(i,j)∈C

φi,j(s) ≤ ||λ||∞ × sup
(i,j)∈C

φi,j(s) + ε ,

sup
(i,j)∈C

φi,j(s) ≤ ε
1−||λ||∞ .

Thus, φx,y (n(x, y), s) ≤ ||λ||∞ supC φi,j(s) + ε ≤
(
||λ||∞

1−||λ||∞ + 1
)
ε. Finally, as

this kind of inequality holds for any ε > 0, we have Px,y(∀n > 0, (Xn, Yn) 6=
(x, y)) = 0.

Note that consequently, if Π(1) is i-periodic and Π(2) is j-periodic (instead of
1-periodic), then Q is positive-recurrent lcm(i, j)-periodic.
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C List of Notations
I interval of integers in Z
N set of non-negative integers
Ja, bK interval of integers {n ∈ Z , a ≤ n ≤ b}
R+ set of non-negative real numbers
V finite set
G directed graph allowing superposed edges
Σ finite set of transformations over V
σ mapping in Σ, also called a colour
P(S) set of probabilities over a measurable space S
µ random colour law in P(Σ) with countable support
P transition law over V
λ invariant law of a transition law P
X, Y Markov chains
N random colour of law µ
S+ set of the words of finite length on the alphabet S
(E, d) Polish space
B(S) Borel algebra of a topological space S
Π Markov kernel over E
Q coupling of a kernel Π
~x vector in E1 × · · · × Er
x̂j vector (x1, . . . , xj−1, xj+1, . . . xr) induced by ~x
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