
POLARIS Team, LIG, Grenoble

M2 Internship Report

Random Potential Games
with Partial Interactions

Author
Léo Gayral

Supervisors
Federica Garin
Bruno Gaujal

28/01/2019 – 28/06/2019

Undergoing of the Internship

The main topic of my internship was Potential Games with Partial Interactions. I spent most of my time
working on this topic, particularly during the first two months. The groundwork from which I stemmed
is essentially Stéphane Durand’s PhD Analysis of Best Response Dynamics in Potential Games [Dur18].
The majority of the report will focus on my work on the Black Box Dynamics, which is deeply related
to this thesis.

In order to explore the aspects of this model less suited to a pure theoretical study, I set up several
numerical simulations, which required more than a hundred hours of running time from end to end, too
much for my small laptop. This is why I learned about the basic usage of the OAR batch scheduler on
the CIMENT clusters.

I also followed a MOOC about reproducible research, on the advice of an Inria researcher from my
research team who worked on its creation. I learned a lot of useful methodological tips, and it gave me
a reason to learn how to use Markdown and Jupyter Notebooks. This knowledge of Python notebooks
already proved itself useful when I had to synthesise the results of the aforementioned simulations into
clearly understandable documents.

I also worked on several smaller projects. I read Pólya’s classic book How to Solve It [Pol04], and
attended a weekly reading group on Goodfellow’s Deep learning [GBC16]. I finally made a proper
academic webpage in order to bind together in a nice package all the documents worth sharing I have
produced up to now.

I would like to thank Bruno Gaujal for this internship opportunity, as well as Federica Garin. While
the main topic of my internship has been interesting in itself, my thanks also go to the rest of the
POLARIS/DATAMOVE teams for all the learning opportunities they brought to me along the way.

Contents

1 Potential Games and the Best Response Dynamics (BRD) 2
2 Bandit Policies and the Black Box Dynamics (BBD) 4
3 Intersection-Free Approximation (IFA) of BBD 6
4 Distributed Framework 8
5 Lower Bound with the Clumsy Coupon Collector (CCC) 9
6 Upper Bound on IFA 10

6.1 Exact Expression for E [TIFA] . 10

6.2 Numerical Simulations . 11

6.3 Upper Bound of the Integral . 12

6.4 Upper Bound of the Fraction . 12

7 Numerical Comparison Between BBD and IFA 13
8 A Better Clock for BRD 16
9 Local Best Response (LBR) 17
10 Perspectives 19
References 19
A Implementation of BBD with Collisions in Python 20

1

https://www.fun-mooc.fr/courses/course-v1:inria+41016+session02/about

Introduction

During this internship, I worked in the context of potential games. These games have been defined in
[Ros73], and have been extensively studied since [MS96]. Potential games are known to be equivalent to
congestion games, a general paradigm for resource-sharing problems. Thanks to this equivalence, Poten-
tial games have been notably applied to routing games [MM56], load balancing in HPC and distributed
optimisation [Rou05].

Such games have well-known canonical algorithms, with worst-case behaviours long since studied.
However, for practical applications, the average complexity matters as much if not more than the worst
cases. Consequently, my work is part of a recent trend in algorithmic game theory, which consists in
studying the average behaviour of these so-called canonical algorithms.

In the following sections, we will begin with some prerequisite knowledge, upon which my work was
based. Then, we will introduce an algorithm called the Black Box Dynamics (BBD), and a distributed
framework, in which this approach seems more natural than the Best Response Dynamics (BRD). Finally,
we will show that the minimal convergence time in this setup is a Θ̃

(
A2N2

)
for N players and A actions.

After this, we will have a much briefer look at two variants of BRD, by changing the clocks used by the
players or the topology of the action space, and then end the report on a few perspectives for future
works.

1 Potential Games and the Best Response Dynamics (BRD)

In this section, I will provide a brief overview of Potential Games and the Best Response Dynamics,
in order to provide the required background to understand my work on the subject in the rest of this
report.

The baseline object at the center of my study was this class of games:

Definition 1 (Matrix Games). We define a game G as a tuple
(
N ,X =

∏
k∈N Ak, (uk)k∈N

)
. More

precisely, in this tuple:

• N = [N] is the (finite) set of players,

• Ak is the (finite) set of actions available to the player k ∈ N ,

• uk : X → R is the payoff function, the reward which player k wants to maximise.

We may simplify the model by assuming, without loss of generality, that all the players share a common
action set A = [A], hence X = AN .

Because each player wants to maximise their own reward, a canonical transition law consists in
performing a best response:

Definition 2 (Best Response Correspondence). For a game G we define the best response of player
k ∈ N in the state x ∈ X as the set of actions BRk(x) := argmax

a∈A
uk (x [xk := a]).

These transitions, used successively, result in a dynamic on the game. We are interested in the fixed-
points for this dynamic, historically called pure Nash equilibria:

Definition 3 (Pure Nash Equilibrium). A state x ∈ A is a pure Nash equilibrium if, for any player
k ∈ N , we have xk ∈ BRk(x).

2

We may call such a state a Nash equilibrium or even an equilibrium from now on, for simplicity’s sake.

A Nash equilibrium can be seen as a local maximum of all the functions uk on the graph X with edges
between states with Hamming distance equal to 1. Note that such a pure equilibrium does not always
exist. For example, in the two-players zero-sum game with payoff function u1 = 1x1=x2

−1x1 ̸=x2
, player

1 wants to agree and player 2 to disagree. u1 has two strict local maxima, both being strict minima of
u2, hence a game without equilibrium. This game is commonly known as Matching Pennies, and has
been studied back and forth. The same argument can be made for rock–paper–scissors, as any action for
a player is weak against an action from their adversary. By adding a supplementary structure on matrix
games, we can however guarantee the existence of such an equilibrium.
Definition 4 (Potential Games). We say G is a potential game if:

∃Φ : X → R, ∀k ∈ N , ∀x, y ∈ X s.t. x−k = y−k, uk(x)− uk(y) = Φ(x)− Φ(y) .

Note that, in this case, the potential function Φ is unique, up to an additive constant.

Proposition 1 (Existence of a Nash Equilibrium). Consider a potential game (G,Φ). Then the Nash
equilibria of G are exactly the local maxima of the potential Φ.

By finiteness, as Φ has a global maximum, then G admits at least one Nash equilibrium.

A Nash equilibrium is not necessarily a desirable course of actions. Typically, consider the prisoner’s
dilemma with actions a for ally and b for betray. The rewards are u1(a, a) = 1, u1(a, b) = −1, u1(b, a) = 2,
u1(b, b) = 0 and u2 (x1, x2) = u1 (x2, x1). Then Φ(x1, x2) = 1x1=b + 1x2=b is a potential function for
this game. Hence, the only Nash equilibrium of G is the “bad” choice (b, b), whereas the “good” choice
(a, a) is not.

Though such equilibriums are not desirable, they are still interesting to study for two reasons. First,
a selfish behaviour may be the best outcome an agent with limited information may strive for, so as
already stated it is natural to study it. Second, in many cases, we have good inequalities between the
worst Nash equilibrium and the optimal “centralised” solution, called Price of Anarchy bounds. For
example, in discrete congestion games with a finite number of players [CK05], the Price of Anarchy is
equal to 5

2 .

In this framework, playing consecutive best responses for a sequence of players (Kt)t>0 ∈ NN∗ , called
the revision sequence, yields a dynamic on the game described in Algorithm 1.

Algorithm 1: BRD Algorithm
1 Input : I n i t i a l state x0 ∈ X , revision sequence (Kt)t>0 .
2 for t ∈ N :
3 k = Kt+1

4 i f uk (xt) /∈ BRk (xt) :
5 b ∈ BRk (xt)

6 xt+1 = xt [xt,k := b]

7 else :
8 xt+1 = xt

Proposition 2. Using Algorithm 1, a revision sequence on N reaches a Nash equilibrium for any game
iff for any player k the set {t ∈ N∗,Kt = k} is infinite.
This convergence property is indeed agreeable, but it gives no guarantee on the complexity of the algo-
rithm, the number of steps until an equilibrium is reached. Actually, as seen in [Dur18], one can conceive
an example which needs Ω

(
NAN−1

)
steps to reach the equilibrium for any revision sequence, hence an

exponential worst-case scenario. The novelty of [Dur18] is to study randomly generated potential games,
in order to compute the average complexity of Algorithm 1 among other things.

3

Theorem 1 (Average Complexity of BRD). Consider a uniform random potential game with A actions
and N players, such that Φ(x) iid∼

x∈X
U([0, 1]).

Using a round-robin revision sequence, we can bound the average number of steps in [N, eγN + o(N)].
Likewise, using a uniformly random revision sequence, the average number of steps is a Θ(N ln(N)).

2 Bandit Policies and the Black Box Dynamics (BBD)

One of the defaults of the BRD algorithm, in practical situations, is that it uses BRk as an elementary
operation. However, computing the best response in a given state x ∈ X requires A− 1 comparisons. In
a distributed framework, where atomic operations require a fixed delay δ, it is more coherent to consider
each comparison as an elementary operation.

For this reason, I formalised and studied a model where the elementary operation of the dynamics is
to compare one alternative action to the current state, and to keep the best out of these two. The way
a player samples only one action at a time corresponds to a typical bandit framework. We named this
process the Black Box Dynamics (BBD), in the sense that the potential function Φ can be evaluated on a
given state x ∈ X , but cannot be studied per se. The way I see it, this means the sampled action has to
actually be performed by a player in order to observe its corresponding reward and reach a conclusion.
An illustration of the phenomenon would be a car routing problem, where each driver has to try a new
path to estimate its length and conclude whether it is faster than their previous one.

The black box dynamics on a game G is then given by a revision sequence of players and actions
(Kt, Bt)t>0. Just like for BRD, the fixed-points of BBD are exactly the Nash equilibria of G, and we
have the following result:

Proposition 3. To properly define a revision sequence, we need here to fix N and A, thus the state
space X = AN , beforehand.

If a revision sequence (K,B) ∈ (A×N)
N∗

visits each player-action pair an infinite amount of times,
then the induced dynamics reaches a Nash equilibrium for any potential Φ : X → R.

Unlike for the sequence K in BRD, this condition on (K,B) is sufficient but not necessary, and there
exists a “universal” revision sequence with finite length which converges on all the considered games.

Proof. The first implication is as easy as for BRD. Consider a state xt of a game G. If xt is already
a Nash equilibrium, then we are done. If not, then there is a player p and an action b for which
Φ(xt [xt,k := b]) > Φ(xt). Because of our hypothesis on (K,B), starting at any time t ∈ N∗, we will
encounter a time t′ > t such that (Kt, Bt) = (k, b). Hence, τ = min {s ∈ [t+ 1, t′] , Φ(xs) > Φ(xt)} is
well-defined, and we jump from xt to xτ . By finiteness of X , this increasing sequence (with respect to
Φ) is finite, hence a Nash equilibrium is reached in a finite amount of time.

For BRD, only the number of players N was specified, hence an infinite amount of games, including
the aforementioned worst cases with minimal complexity NAN−1 −→

A→∞
∞. Hence, no sequence with

finite length could converge for all games. For BBD, though, we also specify beforehand the number
of actions A. If we forget about the actual values taken by the potential function Φ to only look
at the resulting total order on X , which encapsulates all the results of the comparisons between two
actions, we obtain a finite set of games Z. By using the aforementioned infinite sequence on each
game and initial state (G, x0) ∈ Z × X , we reach an equilibrium after τ (G, x0) ∈ N steps. Thus, after
τ := max {τ (G, x0) , (G, x0) ∈ Z × X} ∈ N steps, all the games reach a Nash equilibrium.

4

Now, the game is played over an infinite time horizon, and we are interested in when an equilibrium
is reached. Using the very same example as for BRD [Dur18], we can show that the worst case for BBD
is exponential, and requires at least NAN−1 steps for any revision sequence to reach a Nash equilibrium.
In order to begin the transition to the distributed framework, and to allow for explicit definitions of the
random variables we will study, let me introduce a centralised algorithm that behaves just like BBD, but
with some added structure.

Algorithm 2: BBD Algorithm
1 Input : Game G , State x0 , Revision sequence (Kt, Bt)t>0

2 L = ∅ # List of satisf ied players
3 for k in N :
4 Mk := {x0,k} # Actions explored by player k
5 φk := Φ (x0) # Potential observed by player k
6 for t ∈ N :
7 k, b = Kt+1, Bt+1

8 i f Φ (xt) ̸= φk : # The state x changed since the last time k played
9 φk = Φ (xt)

10 Mk = {xt,k}
11 i f b /∈ Mk : # The action b was unexplored by k on the current state
12 i f Φ (xt [xt,k := b]) > φk :
13 xt+1 = xt [xt,k := b]

14 φk = Φ (xt+1)

15 L = ∅
16 else :
17 xt+1 = xt

18 Mk = Mk ∪ {b}
19 i f Mk = A : # The current player was satisf ied
20 L = L ∪ {k}

The interest of this structure stems from the fact that it is hard to formalise and study the precise
moment an equilibrium is reached, as it depends on neighbouring states x ∈ X which we have never seen
before. Hence, we define here TBBD as the first time step at which L = N , meaning that all the players
acknowledge they have reached an equilibrium from their perspective. More precisely, L is the list of
satisfied players at a given time, for whom the current action is their best response. Each player k has a
list Mk of the alternative actions they explored in the current state. The list L is updated every time a
player chooses an alternative action, or when Mk is filled. Assuming that Φ is injective, that the order
induced on X is strict, each player k also keeps track of a potential φk, which serves as a way for them
to know whether the state changed since the last time they played.

During a run of the algorithm, some potential comparisons are skipped because b ∈ Mk. We call the
steps for which b /∈ Mk useful, and denote SBBD the amount of useful steps until TBBD. The operation we
are interested in for the computational complexity of the algorithm is the amount of comparisons between
two potentials, and the total amount of comparisons performed by the algorithm is precisely SBBD. In
other words, SBBD represents the algorithmic complexity required in order to reach an equilibrium, while
TBBD represents the time complexity of the process, which includes not only the useful steps but also
the idle steps.

Until now, we have only described deterministic games and revision sequences. However, to allow a
Markovian approach, we must add some randomness to the setting. From now on, we will consider a
uniformly-generated random game:

(Φ(x))x∈X
iid∼ U([0, 1]) . (1)

Please note that, by symmetry, as soon as all the potentials (Φ(x)) are iid and follow a density law, the
order induced on X itself will be uniform and almost-surely strict, which is the property we are actually
interested in. We also assume that the random action sequence (Bt)t∈N∗

iid∼ U(A) and the player sequence
(Kt)t∈N∗

iid∼ U(N) are independent of the potentials and of each other.

5

If we generate each random potential when we read it for the first time during a run of the algorithm,
then we are almost in a Markovian framework: most of the time, we will follow a random law by reading
an unseen potential, but from time to time we may read again an already-seen smaller potential. We call
such an event an intersection, and we denote IBBD the amount of intersections until TBBD, the number
of times the algorithm has a non-Markovian behaviour.

You can find a Python implementation of Algorithm 2 in Appendix A, in the randomised setting de-
scribed above, with an added collision mechanism which we will discuss later on, in Section 4. Assuming
Col_prob=0 so that no collisions can happen, this code simulates exactly a run of the algorithm until
an equilibrium is reached, and returns TBBD. In the code sample, I sticked as much as possible to the
notations of the algorithm above. One reason for using Python is that it is the programming language I
am the most used to, but there also is a good practical reason for it. In the case of BBD or BRD, though
we generate the potentials of the game on the fly, we want them to be fixed and stored afterwards, until
the end, or we may miss an intersection. The state space X has a full size AN , hence even with only
A = N = 10 actions and players we would need several GB of memory to store an initially empty array,
which would still be mostly empty when the algorithm stops. Python has the advantage of having a
native implementation of the dictionary data structure, which allows us to store only the data we need
in a much more efficient fashion. You can see this idea implemented in the Appendix, through the use
of the dictionary S, whose structure is maintained by the auxiliary functions Phi and Code.

3 Intersection-Free Approximation (IFA) of BBD

Following the idea introduced in [Dur18], the so-called intersection-free approximation (IFA) is a Marko-
vian simplification of the model above, where each potential is taken at random, even if a player has
already seen the corresponding state previously. In this simplification, we also consider that whenever a
player k switches for a better alternative (which corresponds to the lines 12 to 15 of Algorithm 2), the
list Mk is reset to ∅. This twisted process induces a new stopping time TIFA and a new amount of useful
steps SIFA.

We can establish a coupling between BBD and IFA by using a common random potential sequence
(Φj)j∈N

. At each useful time step, IFA will read a new potential, while BBD may wait until the next
one because of an intersection. Let us then denote VBBD (resp. VIFA) the amount of potentials read
from this sequence until the time step TBBD (resp. TIFA) of Algorithm 2. By definition of IFA, one new
potential is read at each useful step, so VIFA = SIFA.

Whether using BBD or IFA, because we check if the alternative action has already been explored in
the current state (line 12 of Algorithm 2) before exploring it if needed, we will read at most m := (A−1)N

potentials until a player switches their action for a better one, or else a Nash equilibrium is reached.
Hence, the following properties always hold:

Proposition 4. For any given potential and revision sequences, we have SBBD = VBBD + IBBD and
VBBD ≤ VIFA.

Proof. The first point holds by definition of the variables, as BBD reads a potential at each useful
timestep, which may or may not be an intersection.

For the inequality, notice that IFA stops when we reach a potential Φj which is maximal so far, the
equivalent of a Nash equilibrium in this framework, and then read exactly m smaller potentials. Because
of this, assuming BBD kept reading potentials until Φj to begin with, it will read at most m alternatives

6

(perhaps less because of intersections, which will also result in potentials smaller than Φj) and then stop,
hence VBBD ≤ VIFA.

In particular, we deduce that E [SBBD] ≤ E [SIFA] + E [IBBD]. Because of its entirely Markovian
behaviour, the process IFA can be studied quite precisely. Without any effort, because L must be filled,
hence because each Sk must be filled, we need at the very least m useful steps until the algorithm stops
whether in BBD or IFA.

5 10 15 20 25 30 35 40
x

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

I B
BD

Figure 1: 95% confidence intervals for E [IBBD], using samples of 100 simulations for each interval, by making both
parameters A = x and N = x vary.

IBBD, however, is quite hard to grasp precisely. Its worst-case value may be catastrophic, but we are
only looking at its average value here, which is really small as seen in Figure 1. More interestingly, the
bigger the game, the lower the mean value gets, probably because, as the dimension of X gets higher, the
trajectories leading to intersections get less and less probable. This means that the typical behaviours
of BBD and IFA get closer for bigger amounts of players and actions.

Theorem 2. In this framework, we have E [SBBD] = Θ̃(m).

Proof. First of all, remember the stochastic lower bound SBBD ≥ m, as each of the N players must read
A− 1 actions at the very least to be satisfied.

For the upper bound, let us first study IBBD. To do so, let us remark that each intersection occurs
because, at two points in time during the execution of BBD, two players compared the same state to
their respective positions, meaning that these were at a Hamming distance 1 or 2. Each such pair of
configurations can be associated to at most A − 2 intersections during the whole game (if they are at
distance 1) or 2 (at distance 2). Consequently, instead of counting the amount of intersections in BBD,
we just have to estimate MBBD the amount of moves from one state to another actually performed until
TBBD, and then use the stochastic upper bound IBBD ≤ max(A − 2, 2) × MBBD(MBBD−1)

2 ≤ A ×M2
BBD

for any A ≥ 2.

Now, notice that when a move occurs in BBD, it means that the new potential seen in the sequence

7

is bigger than all the previous ones. What’s more, for the same reason as for VBBD ≤ VIFA, when m

consecutive potentials are smaller than their predecessor, then necessarily the game must have reached
an equilibrium at most now. Hence, we define M the new variable that counts the number of maxima
encountered in the potential sequence before a window of size m without new maximum, such that
MBBD ≤ M . Now, using the computations from [Dur18] (p.45) for 2 actions and m players, we obtain
E
[
M2

]
= O

(
ln(m)2

)
. Hence, we have E [IBBD] ≤ O

(
A ln(m)2

)
.

For the other term, let us remember that SIFA ≤ TIFA stochastically. Now, let us use the upper
bound E [TIFA] = O (m ln(m)) from Theorem 4 shown later on. From this, it naturally follows that
E [SBBD] = O

(
m ln(m)2

)
, hence the announced result.

4 Distributed Framework

In the previously described models, the explicit use of a revision sequence required a centralised or at
least synchronised behaviour. To get closer to a distributed framework, we want each player to follow
their own internal clock in order to decide when they play, to choose an action uniformly at random, and
then to follow the behaviour described by the lines 8-20 of Algorithm 2. We will here describe this new
framework for BBD and IFA, make a full study of TIFA, and then conclude by comparing it with BBD.

In this framework, we add a new parameter, δ, to denote the length of the turn of a player, i.e. the
time they need to explore an alternative action. Because of this, if a new player starts playing before the
previous one ended their turn, a collision occurs. In our framework, where we have to actively perform
the alternative action during the delay δ, it is quite hard to define what happens to the measure of the
potential, both for the previous and the new player. We will here consider that whenever a collision
occurs between two players, this causes the first player to notice something is off during their turn, hence
they will keep playing the new action until their next play. In the case of IFA, because of the Markovian
behaviour, it is equivalent to describe collisions as full-restart scenarios, where the game starts from
scratch, as the lists are reset and the new potential is always uniform in [0, 1].

This will actually have a huge impact on the amount of time the algorithm needs to come to a halt.
Indeed, in [Dur18], as δ corresponds to the time the player spends computing the best course of action,
without doing anything, collisions can only occur when this player is unsatisfied and decides to move,
which yields a pseudo-linear complexity Õ(m). The alternative way of dealing with collisions, as we will
see later on, yields a pseudo-quadratic complexity Õ

(
m2

)
, which is indeed worse but still polynomial

with a low degree, much lower than the exponential worst case.

The last thing left to define is the clocks used by the players. In a purely centralised and sequential
framework, the global order of the operations is fixed, and there is no need to consider their precise
timing. In a distributed framework, though, the order of the operations performed by each player may
be fixed but their actual outcome relies on how they intertwine with the other players’ operations. By
using clocks, which assign a timestamp to each operation, we are now able to deduce a global order for
the operations, hence to study the induced dynamics.

While not the most efficient in practical cases, we will here use independent Poisson clocks with a
common parameter λ

N . For a Poisson clock with parameter θ, the time interval between two consecutive
ticks follows an exponential distribution E(θ), and the intervals are independent of each other. Such
clocks are a canonical tool in a lot of practical cases, like for studying arrival times in distributed
communication protocols. These Poisson clocks also allow for an elegant theoretical study, as it is now
equivalent to study a game with a centralised clock of parameter λ and to pick a player uniformly at
random at each tick. Hence, the collision probability between two consecutive turns is p = 1− e−λδ, and
we will denote q = 1− p.

8

5 Lower Bound with the Clumsy Coupon Collector (CCC)

Using a randomised revision sequence, a simple lower bound on the amount of steps of BRD can be
obtained through the coupon collector problem. In order to find a lower bound on the convergence time
for the black box dynamics, let us define a variant called the clumsy coupon collector (CCC). In this
model, the player wants to collect m coupons to complete their collection. Each acquired coupon is
picked uniformly at random among the m possible ones. Each time they obtain a new coupon, when
they add it to their existing collection, they have a probability p of losing their whole deck in the process.

This model can be found in BBD if we only look at the amount of steps which occur between a move
and a collision, or after the last move. The total amount of alternative actions explored by the players
corresponds here to the number of coupons. This amount of steps will be lower than the overall amount
of time-steps TBBD.

Let us denote Ck the average amount of coupons the player will acquire until they complete their
collection, starting with k coupons initially. We have Cm = 0, and the recursion scheme Ck = 1+ k

mCk+
m−k
m (pC0 + qCk+1).

Proposition 5. Let us define vk(q) =
k∑

j=1

qk−j

j , gk(q) =
k−1∑
j=0

qj = 1−qk

1−q and θ = 1
qm . Using the previous

recursion scheme, we obtain Cm−k = m× vk(q) + C0 × θ × gk(q).

In particular, for m coupons, C0 = m×vm(q)
1−p×gm(q) = m×

m∑
j=1

1
jqj . Note that, if there are no collisions, if

q = 1, then C0 = mHm – where Hm is the m-th term of the harmonic series – which corresponds to the
usual coupon collector problem.

Theorem 3. Consider TBBD the time elapsed during a run of the algorithm, until the time step TBBD.
Then E [TBBD] ≥ δm2 ln(m)−1

ln(ln(m)) for any choice of λ.

Proof. Using Wald’s lemma, E [TBBD] =
1
λ × E [TBBD] =

δ

ln(1
q)
E [TBBD], with the factor on the left of

the product corresponding to the average length of a time-step.

Hence, E [TBBD] ≥ δm2 × 1

ln(1
qm)

m∑
j=1

1
jqj . Let us denote θ = 1

qm ∈]1,∞[so that:

E [TBBD]

δm2
≥ 1

ln(θ)
×

m∑
j=1

1

m

θ
j
m

j
m

=
1

ln(θ)

Hm +

m∑
j=1

1

m
× θ

j
m − 1

j
m

 . (2)

As the rightmost sum is the right Riemann sum of a positive increasing function, we now have the
lower-bound:

E [TBBD]

δm2
≥ 1

ln(θ)

Hm +

1∫
0

θx − 1

x
dx

 . (3)

Using the explicit threshold θ ≤ ln(m)2, then E[TBBD]
δm2 ≥ Hm

ln(θ) ≥ 1
2

Hm

ln(ln(m)) . On the other hand,
assume now θ ≥ ln(m)2. Consider the substitution y = x ln(θ), so that E[TBBD]

δm2 ≥ 1
ln(θ)

∫ ln(θ)

0
ey−1

y dy.
This lower bound corresponds to the mean value on the interval [0, ln(θ)] of the slope of the line segments
of exp between 0 and y, which is a positive increasing convex function on R+. Hence, using Jensen’s

9

inequality, we obtain:
1

ln(θ)

ln(θ)∫
0

ey−1
y dy = EU([0,ln(θ)])

[
eX−1
X

]
≥ e

ln(θ)
2 −1
ln(θ)

2

≥
√
θ−1

ln(
√
θ)

(4)

which is an increasing function of θ, here lower bounded by ln(m)−1
ln(ln(m)) , hence the wanted result.

Note that using the same coupling, the same lower bound applies to E [TIFA].

6 Upper Bound on IFA

In the IFA framework, we can entirely describe the current state of the game at a given time by the
amount of alternative actions explored (an integer k ∈ J0,mK) and the current potential (a number in
y ∈ [0, 1]). Let us denote sk(y) the average number of actual steps (not to be mistaken for the number
of useful steps) starting from such a state. We also define the integral I(y) =

∫ 1

y
s0(u)du, so that

I(0) = E [TIFA] is the overall average number of steps starting with a random potential.

In this section, we will obtain an exact expression for I(0), break it down into several factors which
we will study separately, and finally combine them into an upper bound on E [TIFA].

6.1 Exact Expression for E [TIFA]

In this subsection, we will follow the tracks of [Dur18], and use analogous names to highlight the simi-
larities. The exact computations here are actually really close to what happens in the case of BRD for
2 actions, as it involves precisely one comparison between the current potential, given beforehand, and
a random one. This is why it may help to compare the black box setup with N players and A actions
with the best response dynamics with m players and 2 actions.

Using the dynamics described above, we obtain the following equation when k < m:

sk(y) = 1 +
n+ k

AN
sk(y) +

m− k

AN
(pI(0) + q [ysk+1(y) + I(y)]) (5)

with the border condition sm = 0. In this equation, sk(y) stands for the case where the action has already
been explored by the player. The I(0) term corresponds to the occurrence of a collision. The sk+1(y)

corresponds to the case where the new potential is smaller than y. Finally, the I(y) term corresponds to
an actual move, which increases the potential but resets the list of explored actions.

As N+k
AN 6= 1, we can simplify the equation above into:

sk(y) =
AN

m− k
+ pI(0) + q [ysk+1(y) + I(y)] . (6)

Proposition 6. By induction over k ∈ J0,mK, we obtain the following expression:

sm−k = AN × vk(yq) + [pI(0) + qI(y)] gk(yq) . (7)

In particular, for k = m, as s0 = −I ′, we obtain the following differential equation on I:

I ′(y) + q × gm(yq)I(y) +AN × vm(yq) + p× gm(yq)I(0) = 0 . (8)

10

Hence, as I(1) = 0 by definition of the integral, we have a boundary condition so we can explicitly solve
this system:

I(y) =

1∫
y

exp

q u∫
y

gm(vq)dv

× (pgm(uq)I(0) + AN × vm(u)) du . (9)

Let us now introduce the function hk(y) =
k∑

j=1

yj

j = q
∫ y

0
gk(y). By taking y = 0 in the previous

equation and making the substitution z = qu, we finally obtain the following equality:

I(0) = AN

1− p
q (ehm(q)−1)

×
1∫
0

ehm(qu)vm(qu)du ,

= AN
1−p×ehm(q) ×

q∫
0

ehm(z)vm(z)dz .

(10)

Finally, using Wald’s lemma, E [TIFA] =
δ

ln(1
q)
I(0). This function as a whole is not simple to study.

6.2 Numerical Simulations

Now that we have a relatively simple formula (computationally at least), let us try to perform a few
calculations to estimate the actual minimum of the function with respect to λ for a given value of m.
For this task, we will make use of Python’s scipy.optimize library in order to minimise the function
described above. This yields the results shown in Figure 2.

50 100 150 200 250 300
m

1

2

3

4

5

6

7

8

[T

IF
A
]*
/(δ

m
2 lo

g(
m
))

50 100 150 200 250 300
m

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

m
δλ

*

Figure 2: Minimum of E[TIFA]
δ×An×m ln(m)

(left) and optimal parameter mδλ∗ (right) as functions of m.

Let us first have a look at the left part of the figure. Here is plotted E[TIFA]
δ×AN×m ln(m) as a function of m.

This function seems to be decreasing, which strongly suggests E [TIFA] = O
(
δm2 ln(m)

)
. Considering

the allure of the plot, we may even have a 1
ln(ln(m)) factor, converging to 0 really slowly, which is not

worth the struggle for now.

11

If we look at the right part, we can see m×δλ∗ as a function of m. This time, the function is increasing,
a bit faster, but still at a sub-polynomial speed. For the rest of this section, we will instead replace this
increasing function by a constant C > 0, so that our parameter becomes λ∗ ∼= C

δm . Consequently, we
have q∗ = exp

(
−C

m

)
≤ 1 which converges to 1 really fast as m → ∞.

6.3 Upper Bound of the Integral

By positivity, computing an upper bound on the integral
∫ 1

0
ehm(u)vm(u)du will also upper bound the

integral in Equation 10 for any choice of q ≤ 1. Using q∗ as defined above to numerically estimate the
integral results in something really close to what is obtained using q = 1, which means that in practice
this upper bound using q = 1 will be pretty tight.

Now, to find an upper bound on this integral, let us split the integration domain into two parts using
a threshold (1− θ) ∈]0, 1[. On the right side, as the functions are increasing and hm(1) = vm(1) = Hm,
we have

∫ 1

1−θ
ehm(u)vm(u)du ≤ θeHmHm. On the left side, we need now to obtain good bounds on vm

and hm close to 0.

For hm, notice that m 7→ hm is increasing, and h∞(y) = − ln(1− y) on [0, 1[. Hence, ehm(u) ≤ 1
1−u .

For vm, it is a tad harder to obtain a bound. Notice that, for a given value of y ∈]0, 1[, j 7→ ym−j is
increasing and j 7→ 1

j is decreasing. Finally, using Chebyshev’s sum inequality, we obtain the following
bound:

vm(y) ≤ 1

m

 m∑
j=1

1

j

×

 m∑
j=1

ym−j

 =
Hm

m
gm(y) ≤ Hm

m(1− y)
. (11)

These upper bounds are clearly not tight close to 1, as they tend to +∞. However, this bound is
good enough under the threshold:

1−θ∫
0

ehm(u)vm(u)du ≤ Hm

m

1−θ∫
0

1

(1− u)2
du =

Hm

m

[
− 1

u

]1
θ

≤ Hm

mθ
. (12)

As eHm = eγm
(
1 +O

(
1
m

))
, by putting together the previous bounds, we obtain

∫ 1

0
ehm(u)vm(u)du ≤

Hm

(
mθ × eγ

(
1 +O

(
1
m

))
+ 1

mθ

)
.

Proposition 7. By taking the optimal value θ∗ = 1

me
γ
2

in the expression above, we obtain the following
upper bound on the integral:∫ 1

0

ehm(u)vm(u)du ≤ 2e
γ
2 Hm

(
1 +O

(
1

m

))
= O (ln(m)) . (13)

Theorem 4. In the case without collision, when p → 0, we obtain in particular:

E [TIFA] = AN

∫ 1

0

ehm(u)vm(u)du ≤ 4e
γ
2 mHm

(
1 +O

(
1

m

))
. (14)

6.4 Upper Bound of the Fraction

Our current upper bound on the convergence time of IFA is:

E [TIFA] ≤ 2e
γ
2 δANHm × 1

ln
(

1
q

) (
1− (1− q)× ehm(q)

) ×
(
1 +O

(
1

m

))
. (15)

12

We won’t be able to find a uniformly good upper bound which does not depend on q, as too long time
steps (q → 1) or too many collisions (q → 0) will result on an infinitely long game on average. What is
left to do is to optimise this central fraction with respect to q, to find a choice of λ which guarantees a
close to optimal outcome on average.

Once again, a precise study of this function for any q ∈]0, 1[seems like an unreachable ideal. Graph-
ically, it appears to be convex, but after a lot of trial and error I learned that proving it is an altogether
different story. This is why we will instead obtain a good upper bound on the minimum using the
parameter λ∗ = C

δm and thus q∗ = e−
C
m .

Naturally, we have 1

ln(1
q)

= m
C . The other half of the fraction is a bit harder to deal with, and we will

in fact prove that (1− q)ehm(q) converges to a constant strictly smaller than one.

The main idea is to make a Riemann sum appear:

hm(q) =
m∑
j=1

e−j× C
m

j =
m∑
j=1

1
m × e−C× j

m −1
j
m

+Hm ,

= −
1∫
0

1−e−Cx

x dx+ ln(m) + γ +O
(

1
m

)
.

(16)

We know that
∫ 1

0
1−e−Cx

x dx = ln(C) + γ + Γ(0, C), where Γ(a, z) =
∫∞
z

ta−1e−tdt is the incomplete
Gamma function. Thus, we have:

(1− q)ehm(q) = C
m

(
1 +O

(
1
m

))
× exp

(
−Γ(0, C) + ln

(
m
C

)
+O

(
1
m

))
,

= e−Γ(0,C) ×
(
1 +O

(
1
m

))
.

(17)

As C > 0, we have Γ(0, C) ∈ R+∗ and thus e−Γ(0,C) ∈]0, 1[.

Finally, putting everything together, for a given value of C, we obtain the bound:

E [TIFA] ≤
2e

γ
2 δ

C ×
(
1− e−Γ(0,C)

) ×AN ×mHm ×
(
1 +O

(
1

m

))
. (18)

Using numerical estimations, the best choice for C, which minimises its contribution, is roughly
C = 0.63. This yields 1

C×(1−e−Γ(0,C))
≤ 4.56, hence the following approximate asymptotic bound:

E [TIFA] ≤ 12.18× δm2Hm . (19)

7 Numerical Comparison Between BBD and IFA

Putting the exact value of the multiplicative factor aside, we have obtained a choice for the clock parame-
ter λ∗ which guarantees E [TIFA] = O

(
δm2 ln(m)

)
. By keeping the lower bound E [TIFA] = Ω

(
δm2 ln(m)
ln(ln(m))

)
in mind, we conclude this choice of λ∗ is close to optimal, and that in any case the optimal will satisfy
E [TIFA] = Θ̃

(
δm2

)
.

Currently, only the lower bound E [TBBD] = Ω
(

δm2 ln(m)
ln(ln(m))

)
has been properly proved for BBD. I

initially hoped I could follow again the tracks of [Dur18] and their coupling with BRD with collisions, but
by trying to do so I encountered some critical gaps which invalidate it in its current state. Unfortunately,
whether in the case of BRD or my study of BBD, we have not managed yet to repair the coupling.

If we are to explicitly obtain a coupling useful for our theoretical purpose, the two processes should ex-
hibit a somewhat similar behaviour stochastically. This is why I used the numpy.random.RandomState()

13

container to use a common pseudo-random sequence of potentials (resp. players, actions, collisions) on
a run of BBD and IFA, by effectively implementing the coupling described in Section 3. The Python
code for BBD can be found in Appendix A.

50 100 150 200 250
N

0

50000

100000

150000

200000

St
ep

s

BBD
IFA
CCC
Upper Bound

60 80 100 120 140 160 180 200
N

3.5

3.6

3.7

3.8

3.9

4.0

4.1

St
ep

s /
 C
CC

BBD
IFA

Figure 3: On the left, average values of TBBD and TIFA, over 400 samples, compared to our lower bound on CCC and upper
bound on IFA, as functions of N , using A = 10 and q∗ = e−

0.63
m . On the right, comparison of TBBD and TIFA normalised

by the lower bound.

Let us now have a look at a few numerical simulations on Figure 3, to convince ourselves that the
current coupling is already quite good. In the dataset used here, the processes TBBD and TIFA are coupled
as described in Section 3. As expected, the lower bound on Clumsy Coupon Collector indeed appears to
be a lower bound on the number of steps for the other processes as well. The empirical means of TBBD
and TIFA appear to be undistinguishable on the left figure. On the right figure, which puts the focus on
the normalised ratios between these quantities and CCC, we can see that there is a strong correlation
between the two processes up to the random noise – the difference between these empirical averages and
their actual mean values – but that none appears to be consistently bigger than the other one. Random
noise aside, the average values of these two ratios seems to be relatively constant, meaning that the
actual values of E [TBBD] and E [TIFA] are proportional to m ln(m)

ln(ln(m)) . We can observe a likewise behaviour
in Figure 4 by making A vary instead of N . Naturally, unlike for IFA and BBD, the ratio for our upper
bound is slowly increasing at a ln(ln(m)) speed.

Now, the previous comparison between BBD and IFA was only on average. As we can see in Figure 5,
there is a distinctly noticeable subset of simulations for which BBD and IFA use the same amount of
steps. This subset represents about 85% of the samples, and is much bigger that the subset of samples
for which 1 ≤ |TIFA − TBBD| ≤ 1000, which represents less than 0.1% of the samples. In the absence of
any collision or intersection, IFA resets the players’ knowledge a bit more often than BBD, which should
yield a consistently greater number of steps. At the same time, intersections in the absence of collisions
slow down BBD relatively to IFA. These two phenomenons are the reason why this strong observed
incentive to have the exact same number of steps seems quite curious and unexpected to me. These
considerations aside, we obtain a relatively symmetric distribution with respect to the diagonal. If the

14

Figure 4: On the left, average values of TBBD and TIFA, over 500 samples, compared to our lower bound on CCC and upper
bound on IFA, as functions of A, using N = 10 and q∗ = e−

0.63
m . On the right, comparison of TBBD and TIFA normalised

by the lower bound. In both cases, a 99% confidence interval is displayed for IFA and BBD.

two samples were purely independent, we would obtain a somewhat “square” pattern. Here, however,
the dots are relatively concentrated around the diagonal line, with a roundish shape, which corresponds
to the fact the coupled behaviours are pretty similar at first, and only the latter part of their trajectories
differs in a chaotic way. The symmetry of the pattern tends to indicate that there is no huge bias for
IFA nor BBD, which in turns seems to indicate that the current coupling between the two processes will
be insufficient to establish a proper theoretical bound on E [TBBD].

Figure 5: Scatter plot of 144000 samples of the coupled process (TBBD, TIFA), using N = A = 20 players and actions and
and q∗ = e−

0.63
m .

15

8 A Better Clock for BRD

Let us now shift the topic a bit from the black box algorithm, back to the best response dynamics.
Up until now, because of the overwhelmingly theoretical study, we used Poisson clocks. This typically
embeds a coupon collector problem into the dynamics, which in turn adds a ln(N) multiplicative factor
to the complexity of BRD, with respect to a round-robin centralised setting, as seen in Theorem 1.

Out of curiosity, we tried using some alternative clocks for BRD. The clocks that performed best in
practical situations were the most naive ones: uniform noisy clocks. More precisely, each player follows
a clock for which the time between two ticks follows a law τ × (1 + θ × U ([−1, 1])), where τ is the
average waiting time and θ the amount of noise. In the noiseless case θ = 0, we obtain a purely periodic
clock, hence a distributed round-robin setting, which poses a simple problem: if two player use the same
frequency and play too close to each other, they will always be in collision, at each and every tick of their
clocks. To avoid this problem, it is natural to add some noise to allow players to avoid eternal collisions.

Intuitively, τ must be big enough so that there aren’t too much collisions, but small enough so that
we still have to wait at most a a linear amount of time once the Nash equilibrium has been found.
Likewise, θ should be small enough to get closer to a round-robin behaviour, but big enough to disperse
the eventual collisions. In this framework, for a given value of A, the ratio E[T]

N seems to have roughly
the same value independently of N . Empirically, it appears that too small values of θ have a nefarious
effect on the mean number of steps, but not really θ = 1, as we can see in Figure 6.

50 100 150 200 250 300
N

0

200

400

600

800

1000

1200

1400

[T
]

50 100 150 200 250 300
N

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

[T
]/
N

Figure 6: Average value of the convergence time T (left) and the ratio T
N

(right) over 1000 samples using parameters τ = N

and θ = 1, with δ = 1.

16

Let us now estimate the somewhat worst-case probability of collision, to get a least a rough idea of
why big values of θ still work relatively well. The first thing we would like to avoid is for another player
j to be in collision twice with the same tick of k. This means that we want at most one tick of j in a
given interval of length 2δ. Considering the minimal time between two ticks, this yields the condition
τ(1 − θ) ≥ 2δ. As we will reasonably have θ = o(τ), this is not a harsh constraint when the amount of
players gets large.

Now, what is the worst possible case for player k in terms of collisions? For each player, only one tick
of their respective clock could collide with k, if it happens in the interval [−δ, δ]. Hence, the worst case
would for each player j to have the collision window of size 2δ fully included in their target interval of
size 2θτ , hence a collision probability δ

θτ (this requires θτ ≥ δ). As each player has a clock independent
of the others, this means that, conditionally on the value of player k’s tick time, the worst case collision
probability is 1−

(
1− δ

θτ

)N−1.

Now, consider τ = δN
C for some constant C > 0. This choice of τ needs a linear time to stop once a

Nash equilibrium has been reached, which is what we desire. Using this value of τ , and assuming θ does
not go to 0:

1−
(
1− δ

θτ

)N−1

= 1− exp

(
(N − 1) ln

(
1− C

θN

))
= 1− exp

(
−C

θ
+O

(
1

N

))
. (20)

Taking a bigger value for C lowers the worst-case collision probability, but at the expense of a longer
time to stop once Nash is reached. However, taking a bigger value for θ not only helps to lower this
worst-case collision probability, the probability to stay in a bad case, but also keeps the probability to
enter in a collision under control.

As seen in [Dur18], using the collision rule of BRD with Poisson clocks, a constant collision probability
at each tick is sufficient to reach a reasonable O (N ln(N)) value for E [TIFA]. Thus, seeking the same
property for these clocks seems reasonable. Be aware however that, while this worst-case study makes
sense heuristically, it is only a heuristic. The study done with Poisson clock fully exploits the memoryless
behaviour of the ticks, which induces a natural way to analyse the process. Here, say players j and k

both previously played at time 0, and the current time is τ(1 + θ) − δ. Then we are certain that both
players will play again in less than δ, hence we are certain that another collision will occur. From a
centralised viewpoint, a collision may be a certain event in the close future at some points in time. To
overcome this obstacle, other analysis methods are needed.

With a bit more time, I would have adapted my simulations from BRD to BBD, to see if the
convergence time becomes a O

(
m2

)
. With much more time, a more in-depth theoretical study of these

clocks would be an interesting topic, perhaps to see how they relate to the round-robin framework they
aim to approximate.

9 Local Best Response (LBR)

I also worked on another variation of BRD, which we called Local Best Response (LBR). In this new
framework, the actions of a player are the vertices of a graph, and the player can only see the neighbouring
actions, and will choose the best response out of these neighbours until they reach a local maximum of
the potential on their action graph. This model can be justified by a form of laziness from the players:
in a car routing problem, a lazy agent may consider a path slightly different from their current route,
but not an altogether different one. Best Response corresponds to the special case where every player
has a complete graph over their actions.

17

50 100 150 200 250 300 350
A

20

40

60

80

100

120
Co

m
pa

ris
on

s *
 ln

(ln
(A
))
/ l
n(
A)

Figure 7: Average number of comparisons for LBR over 1000 samples, as a function of A, using N = 10 players and an
average degree D = 10.

To simulate the LBR algorithm, we generated a random graph for each player at the beginning of
the game using a variant of the configuration model with independent random clustering coefficients
following an exponential distribution, so that the average degree is fixed to D even as A → ∞. In my
current implementation, the players checks their surrounding actions at each one of their turns, even if
they should know they are satisfied.

Using a complete graph, we perform D = A − 1 comparisons at each steps, and N ln(N) steps on
average as stated in Theorem 1, thus O (AN ln(N)) comparisons overall. If the graphs are generated
independently at each step, for A � D, we have an average number of comparisons by step proportional
to D. Hence, the best we may hope for is a O (DN ln(N)).

However, we can see in Figure 7 that the number of comparisons seems to grow logarithmically with
A, thus our best guess for the complexity would be O (D ln(A)N ln(N)). This may come from the fact
that each jump from one action to a neighbouring one corresponds to a transition for the uniform random
walk, which induces a bias towards higher degrees if we look at its invariant distribution.

This model is still quite fresh, so there is a lot of things to study and it would greatly benefit
from exchanges with people specialised on (random) graphs, at the very least to choose a graph model
representative of the kind of networks used as a motivation for LBR.

18

10 Perspectives

The last two sections correspond to much less explored landscapes, and each of them would deserve a
proper in-depth theoretical study, as we can observe a noticeable decrease of the complexity in comparison
to the typical best response algorithm with Poisson clocks.

More importantly, we have seen a full study of the average complexity of the intersection-free ap-
proximation of BBD. The most crucial missing step now would be to establish a proper coupling between
BBD (resp. BRD) and its approximation, to properly conclude the theoretical study of BBD. As we
have seen in Section 7, the coupling used for the centralised case still yields a positive correlation be-
tween IFA and BBD in a distributed framework, but its theoretical properties are insufficient to deduce
proper relations between TBBD and TIFA. The next milestone would now be to find a new coupling, with
properties specifically adapted to the collisions and intersections of the distributed framework.

References

[BDML06] Tom Britton, Maria Deijfen, and Anders Martin-Löf. Generating simple random graphs with
prescribed degree distribution. Journal of Statistical Physics, 124(6):1377–1397, Sep 2006.

[CK05] George Christodoulou and Elias Koutsoupias. The price of anarchy of finite congestion games.
In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing,
STOC ’05, pages 67–73, New York, NY, USA, 2005. ACM.

[Dur18] Stéphane Durand. Analysis of Best Response Dynamics in Potential Games. PhD the-
sis, École doctorale Mathématiques, Sciences et technologies de l’information, Informatique
(MSTII), 2018.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[MM56] Christopher B. Beckmann Martin; McGuire, C. B.; Winsten. Studies in the Economics of
Transportation. Yale University Press, 1956.

[MS96] Dov Monderer and Lloyd S. Shapley. Potential games. Games and Economic Behavior,
14(1):124 – 143, 1996.

[Pol04] G. Polya. How to Solve It: A New Aspect of Mathematical Method. Princeton Science Library.
Princeton University Press, 2ed. edition, 2004.

[Ros73] Robert W. Rosenthal. A class of games possessing pure-strategy nash equilibria. International
Journal of Game Theory, 2(1):65–67, Dec 1973.

[Rou05] Tim Roughgarden. Selfish routing and the price of anarchy, volume 174. MIT press Cam-
bridge, 2005.

19

A Implementation of BBD with Collisions in Python

import numpy as np

def Code(x,A): # Dictionaries cannot use arrays as indices, hence the conversion to a codeword
c=0
for b in x :

c = b+A*c
return c

def Phi(x,A,S,POTENTIAL):
c = Code(x,A)
if c not in S :

S[c] = POTENTIAL.uniform()
return S[c]

def BBD(A,A_seed,N,N_seed,Phi_seed,Col_prob,Col_seed):
Here we define the pseudo-rng used by the algorithm
so that IFA and BBD can use the same random sequence
POTENTIAL = np.random.RandomState()
ACTION = np.random.RandomState()
PLAYER = np.random.RandomState()
COLLISION = np.random.RandomState()
POTENTIAL.seed(Phi_seed)
ACTION.seed(A_seed)
PLAYER.seed(N_seed)
COLLISION.seed(Col_seed)
S = {} # Dictionary of explored states
x = [0 for k in range(N)] # Initial state
L = set() # Set of satisfied players
M = [set([0]) for k in range(N)] # Set of explored actions for each player
phi = [Phi(x,A,S,POTENTIAL) for k in range(N)] # Last potential for each player
T = 0 # Amount of steps

while len(L) < N :
k = PLAYER.randint(0,N) # Random player in this turn
b = ACTION.randint(0,A) # Random action in this turn
collide = (COLLISION.uniform() < Col_prob) # Boolean event of a collision in this turn

if Phi(x,A,S,POTENTIAL) != phi[k] : # If the state changed, we reset the player's knowledge
phi[k] = Phi(x,A,S,POTENTIAL)
M[k] = set([x[k]])

if b not in M[k] : # If b was previously explored by k, the turn stops, no collision can occur
y = x.copy()
y[k] = b
if collide :

x[k] = b
phi[k] = Phi(x,A,S,POTENTIAL)
L = set()
M[k] = set()

elif Phi(y,A,S,POTENTIAL) > phi[k] : # If there is no collision then turn plays is it should
x = y
phi[k] = Phi(x,A,S,POTENTIAL)
L = set()

M[k].add(b)
if len(M[k]) == A :

L.add(k)
T += 1

return T

20

	Potential Games and the Best Response Dynamics (BRD)
	Bandit Policies and the Black Box Dynamics (BBD)
	Intersection-Free Approximation (IFA) of BBD
	Distributed Framework
	Lower Bound with the Clumsy Coupon Collector (CCC)
	Upper Bound on IFA
	Exact Expression for E[TIFA]
	Numerical Simulations
	Upper Bound of the Integral
	Upper Bound of the Fraction

	Numerical Comparison Between BBD and IFA
	A Better Clock for BRD
	Local Best Response (LBR)
	Perspectives
	References
	Implementation of BBD with Collisions in Python

